论文部分内容阅读
针对现有基于深度卷积神经网络模型的图像超分辨重建技术存在图像特征提取尺度单一和中间层次特征利用不充分等问题,提出了一种多尺度残差聚合特征网络模型。首先,该模型利用不同扩展系数的扩展卷积和残差连接设计了一种混合扩展卷积残差块(HERB),有效地提取到图像多个尺度的特征信息;其次,引入了一种特征聚合机制(AM),解决了网络中间层次特征利用不充分的问题。在常用的5种数据集上进行的实验结果表明,所提网络模型在主观视觉效果和客观评价指标上都比其他模型具有更好的性能。