论文部分内容阅读
目的高分辨率遥感图像检索中,单一特征难以准确描述遥感图像的复杂信息。为了充分利用不同卷积神经网络(convolutional neural networks,CNN)的学习参数来提高遥感图像的特征表达提出一种基于判别相关分析的方法融合不同CNN的高层特征。方法将高层特征作为特殊的卷积层特征处理,为了更好地保留图像的原始空间信息在图像的原始输入尺寸下提取不同高层特征再对高层特征进行最大池化来获得显著特征;计算高层特征的类间散布矩阵,结合判别相关分析来增强同类特征的联系,并突出不同类特征之间的差异,从而