基于行为学习的改进LapSVM算法及其应用

来源 :电子信息对抗技术 | 被引量 : 0次 | 上传用户:gaozheng929292
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
拉普拉斯支持向量机通过流形正则项能够利用未标记数据信息进行半监督学习。但其流形正则项中的数据邻接图由于没有利用数据的标记信息而不能准确表征数据流形结构,并且热核参数的经验式选择也无法保证算法的学习性能。为此,基于人类行为认知的思想构造一种新的数据邻接图:首先设计一种能够利用数据标记信息的行为相似性边权值,然后所提出的局部视角距离不仅反映邻域结构特性而且克服了热核参数选择的问题。在公共数据集上的实验验证了所提出算法的性能,最后将之应用于辐射源个体识别。
其他文献