坚硬顶板深孔预裂爆破强制初放技术研究

来源 :矿业安全与环保 | 被引量 : 0次 | 上传用户:lwj2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对坚硬顶板条件下初采初放期间发生压架的问题,以淮南矿区潘二煤矿为工程背景,采用理论分析、数值模拟和现场实测相结合的研究方法,对深孔预裂爆破强制放顶高度进行研究.结果表明:强制放顶高度应不小于10 m;在0~20 m内,随着放顶高度的增加,基本顶初次来压步距减小,煤壁前方支承压力降低;在20~30 m内,初次来压步距及支承压力均变化不大,因此确定最佳放顶高度为20 m.强制放顶初采后,支架压力监测结果表明,初次来压步距为17~30 m,且来压不剧烈,深孔预裂爆破效果良好.研究结果对此类条件下工作面的初采初放具有借鉴意义.
其他文献
学位
为研究采掘应力作用下工作面煤体瓦斯压力的变化规律,借鉴土力学渗流固结模型,设计了一种由钢筒、活塞、弹簧组成的试验装置,形象地模拟采掘应力作用下瓦斯和煤体骨架的受力过程及相互作用,进而提出超静瓦斯压力与超静瓦斯压力系数.通过对轴对称应力状态下瓦斯和煤体骨架的应力、体积应变及相互关系进行理论分析,结合井下煤体采掘应力分布规律,得出超静瓦斯压力与支承压力的关系式.研究结果表明:超静瓦斯压力不同于静瓦斯压力,其是由采掘应力引起的瓦斯压力增量.采掘应力刚发生时,超静瓦斯压力达到最大,随着渗流的进行,超静瓦斯压力不断
近年来随着国家大力推进职业教育发展及“双高”建设和“1+X”学徒制培养措施的实施,以往高职院校的教学模式逐渐难以满足现状,高等数学教学同样也面临此境,尤其是当前越来越多的学生对高等数学课程产生心理抗拒和行为倦怠.针对此种现象,以昆明冶金高等专科学校高等数学课堂中学生倦怠行为为例,采用AHP模糊综合评价法构建4个一级指标,16个二级指标的学生倦怠行为评价体系,对校内外专家、同行和授课学生300余份问卷调查所得到的数据作实证分析,清晰了解学生倦怠行为程度和成因及其根源.
为了研究煤矿综放开采覆岩破坏规律与导水断裂带高度,通过数值模拟分析了采动覆岩破坏过程,采用理论分析方法建立了直接顶破坏与基本顶砌体梁失稳力学模型,揭示了直接顶与基本顶失稳机制.基于盛泰煤矿15201综放工作面采矿地质条件,研究了不同采高、工作面倾向长度、煤层倾角条件下导水断裂带最大高度.研究结果表明:导水断裂带高度与煤层采高、工作面倾向长度、煤层倾角呈正相关关系;导水断裂带高度数值模拟结果位于《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》中经验公式计算结果范围之内,验证了该数值模拟模型及岩性参数的
为了研究煤矿井下工作面采动对上覆岩层运动规律的影响,以察哈素煤矿近水平厚煤层31313工作面为工程背景,分别从微震事件整体分布范围、岩层中的不同高度分布、微震频次与周期来压关系等方面对岩层移动规律,以及采动影响下煤体破裂范围进行研究,并运用数值模拟软件3 DEC进行验证.研究结果表明:发生在不同高度层位的破裂事件具有不同的周期性,一般高位岩层的周期包含若干个中位岩层的周期;采场上方岩层18 m内为直接顶,18~60 m内为基本顶;由微震事件分析得到的周期来压步距是实际来压步距的2倍;采用微地震监测技术可真
为了研究巷道入口风温季节性变化下围岩温度场的变化规律,以及不同物理参数对围岩温度场的影响,根据能量守恒和傅里叶定律,建立围岩温度场导热方程,沿巷道轴向和围岩径向进行离散单元划分,应用有限差分法建立巷道入口风温季节性变化下围岩温度场数值解法,编制C#程序并以济宁三号煤矿为例进行模拟研究.结果表明:巷道入口风温季节性变化下围岩温度随与巷道中心距离的变化具有两区分布特征;径向上不同深度处围岩温度呈季节性变化且变化幅度随深度的延伸逐渐减小,深部围岩温度最大值或最小值出现的时间滞后于浅部围岩;地面气温年较差、采深及
为了解决寺河矿5309工作面上隅角瓦斯超限的问题,采用顶板走向长钻孔抽采瓦斯的方式进行瓦斯治理,运用FLUENT软件模拟分析布置于平行回风巷且孔间距为10 m的顶板走向长钻孔束在不同参数条件下的瓦斯抽采效果.研究结果表明:随着顶板走向长钻孔束与底板垂直距离的增加,钻孔抽采瓦斯纯流量先增大后减小,上隅角瓦斯浓度呈增高的趋势;随着顶板走向长钻孔束与回风巷水平距离的增加,钻孔抽采瓦斯纯流量先增大后减小,上隅角瓦斯浓度呈先降低后增高的趋势.经对比分析确定顶板走向长钻孔束最佳抽采位置距顶板垂直高度为38 m、距回风
以吸附干燥装置气体均匀分布为出发点,基于流体力学相关理论建立数学模型,对低浓度煤层气吸附干燥装置布气系统进行数值模拟研究,提出了吸附塔内布气系统的优化方法.通过计算发现,对于实际应用中的圆柱干燥塔,由于进气管与塔体连接处结构设计欠佳,轴向气流分配不均非常严重,气流速度的绝对不均匀系数为1.028;在吸附塔内安装孔板型布气系统,挡板上小孔整体排列,孔径均为3.0 mm,气流速度的绝对不均匀系数由1.028下降到0.321,均匀性得到改善;将布气系统挡板中心的孔径减小到1.5 mm,将靠近壁面的孔径增大到4.
学位
学位