论文部分内容阅读
:对传统的BP算法进行了改进 ,提出了BP神经网络动态全参数自调整学习算法 ,又将其编制成计算机程序 ,使得隐层节点和学习速率的选取全部动态实现 ,减少了人为因素的干预 ,改善了学习速率和网络的适应能力。计算结果表明 :BP神经网络动态全参数自调整算法较传统的方法优越 ,训练后的神经网络模型不仅能准确地拟合训练值 ,而且能较精确地预测未来趋势