Toward practical photoelectrochemical water splitting and CO2 reduction using earth-abundant materia

来源 :能源化学 | 被引量 : 0次 | 上传用户:eciling
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Photoelectrochemical (PEC) fuel generation from water splitting and CO2 reduction (CO2R) utilizing solar energy holds immense potential to solve the current energy and environmental issues.In the past dec-ades,numerous studies have been devoted to this fast-growing research field,and it is essential to develop efficient photoelectrodes with earth-abundant materials for the practical application of PEC sys-tems.A thorough review of earth-abundant materials and associated devices for PEC fuel generation is beneficial to uncover the inherent obstacles and pave the way for future research.Herein,we summarize the recent progress of earth-abundant light-absorbers and cocatalysts in the PEC systems.The unbiased configurations and scaling-up strategies of PEC devices using earth-abundant materials are examined.A comparison between PEC water splitting and CO2R is carried out to promote better understanding of the design principles for practical materials and devices.Last,the prospects on advanced materials,underly-ing mechanisms,and reaction systems of PEC water splitting and CO2R are proposed.
其他文献
Along with the continuous consumption in lithium-ion batteries(LIBs),the price of cobalt is inevitably going up in recent years.Therefore,recycling valuable Co element from spent devices,and boosting its service efficiency are becoming two indispensable a
In the present investigation,we fabricated strontium(Sr2+)incorporated CsPbI2Br-based inorganic per-ovskite solar cells in ambient conditions.The morphology,crystallinity,absorption,elemental composi-tion and photoluminescence analysis of the bare CsPbI2B
Potassium-ion batteries (PIBs) are a promising candidate for next-generation electric energy storage applications because of the abundance and low cost of potassium.However,the development of PIBs is limited by sluggish kinetics and huge volume expansion
The activity of Mo2C-based catalyst on vegetable oil conversion into biofuel could be greatedly promoted by tuning the carbon content,while its modification mechanism on the surface properties remained elu-sive.Herein,the exposed active sites,the particle
The increased demand of electronic devices promotes the development of advanced and more efficient energy storage devices,such as batteries.Lithium-ion batteries(LIBs)are the most studied battery sys-tems due to their high performance.Among the different
In recent years,perovskite solar cells(PSCs)have become a much charming photovoltaic technology and have triggered enormous studies worldwide,owing to their high efficiency,low cost and ease of prepa-ration.The power conversion efficiency has rapidly incr
Tin(Sn)metal foil is a promising anode for next-generation high-energy-density lithium-ion batteries(LIBs)due to its high capacity and easy processibility.However,the pristine Sn foil anode suffers nonuni-form alloying/dealloying reaction with lithium(Li)
Aqueous rechargeable zinc batteries are getting increasing attention for large-scale energy storage owing to their advantages in terms of cost,environmental friendliness and safety.Here,the layered puckered γ\'-V2O5 polymorph with a porous morphology is
Owing to the ever-increasing charging demand for portable electronics,display devices and wearable electronic textiles,flexi-ble and lightweight solar cells are highly urgent to be developed.
期刊
Carbonaceous materials are the most promising candidates as the anode for sodium-ion batteries(SIBs),however,they still suffer from low electric conductivity and sluggish sodium ion(Na+)reaction kinetics.Appropriate composition modulation using heteroatom