基于自监督深度学习的NVST图像去噪

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:netting_fish
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
新型真空太阳望远镜(NVST)作为研究太阳物理最主要的光学太阳望远镜之一,在采集图像数据过程中会遭受各种噪声干扰,影响对观测数据的研究。一些基于标准监督深度学习的方法在图像去噪领域取得显著成果,但对于干净数据难以获取的天文图像领域该类方法变得不适用。针对此问题,本文将基于自监督深度学习的图像去噪方法应用于NVST图像去噪。为定量评价网络模型性能,首先对经过重建的数据添加仿真噪声;其次将含噪数据通过噪声水平估计网络对噪声水平进行估计;接着利用自监督卷积盲点网络对图像特征进行学习,同时使用贝叶斯推理对图
其他文献
立方星具有发射成本低、周期短、尺寸小和功率小等优点,非常适合某些创新技术率先验证、星载一体化或者以分布式空间网络的方式提供遥感与通讯等服务,例如星座和编队飞行等.
为了克服迭代最近点(ICP)算法鲁棒性差、配准精度低的问题,提出了一种改进的基于快速点特征直方图(FPFH)的ICP点云配准算法。首先,基于改进内部形态描述子和法向矢量角的变化来提取点云特征;其次,使用指数函数优化欧氏距离,并将优化的欧氏距离作为FPFH算法的权重系数,用于特征点描述,从而保证利用初始对齐估计得到更准确的点云位置;然后使用双重约束和单位四元数算法完成初始配准;最后,给ICP算法构建
物质的太赫兹光谱具有独特的“指纹谱”特性,可以利用该特性对物质进行识别.随着人工智能技术的发展,深度学习算法在太赫兹光谱识别领域得到了越来越广泛的应用.然而在实际应