论文部分内容阅读
由于水下显著性检测数据集不足,导致基于深度学习的水下图像显著性检测网络容易出现过拟合的问题,从而影响显著性检测网络的性能。针对上述问题,本文引入图像风格转换方法,提出一种基于CycleGAN的水下显著性检测网络。网络生成器由图像风格转换子网络和显著性检测子网络构成。首先,通过无监督的级联方式对风格转换子网络进行风格转换训练,并利用该网络对陆地图像和水下图像进行风格转换,构建训练和测试图像数据集,以解决水下显著性检测数据集不足的问题;然后,使用陆地及其风格转换后的显著性数据集对显著性检测子网络进行训练