论文部分内容阅读
提出基于布谷鸟搜索(CS)和支持向量回归(SVR)的锂离子电池健康状态(SOH)预测算法,通过CS进行SVR参数寻优,得到优化的SVR模型。以单次放电过程的平均电压和温度作为模型输入,得到SOH预测结果并计算预测误差。根据误差、采用CS算法进行模型优化,得到数据集中第5、7号电池预测的误差分别稳定在0.50%和0.75%以内。采用效果较好的基于平方指数和周期协方差函数(SE)的多尺度高斯过程回归(MGPR)算法、基于改进粒子群(IPSO)优化的SVR算法和基于遗传算法(GA)优化的SVR算法作为对比。CS