【摘 要】
:
分析了在奈特不确定性环境下,股票的预期回报率服从Markov链的跨期消费和资产选择问题.首先,对由风险资产预期回报构成的不可观测状态下的隐Marbv状态转换模型做出了刻画,使
论文部分内容阅读
分析了在奈特不确定性环境下,股票的预期回报率服从Markov链的跨期消费和资产选择问题.首先,对由风险资产预期回报构成的不可观测状态下的隐Marbv状态转换模型做出了刻画,使人们对感性的“不可观测状态”的实际金融市场到其精确的数学模型表达有一个清晰的认识.其次,在连续时间风险模型下,假设具有递归多先验效用的投资者拥有一个不可观测的投资机会的先验集,借助Malliavin导数和随机积分方程求解投资者最优消费和投资策略的显式表达式.通过数值模拟分析时,发现不完备信息下的连续Bayes修正产生了能够削减跨期对冲
其他文献
针对一维带有不连续系数和奇异源项的椭圆型方程,采用匹配界面和边界(MIB,matched interface and boundary)方法进行求解.该方法对微分方程和跳跃条件的离散是分别进行的,通过
对于对称特征值问题,基于对原有复杂Jacobi共轭条件的简化,提出了一种修正的Jacobi共轭预处理梯度法. 在理论上证明了在求解单个端部特征值时修正方法与原始方法有着渐近等价的
提出了两个求解空间四阶的时间亚扩散方程的数值方法,其误差阶分别为O(τ+h2)和O(τ2+h2).通过Fourier方法,发现两个差分格式均为无条件稳定的.最后,通过数值例子,验证了两个算法的
随着图像采集设备的发展和对图像分辨率要求的提高,人们对图像处理算法在收敛速度和鲁棒性方面提出了更高的要求.从优化的角度对Chan-Vese模型进行算法上的改进,即将共轭梯度法应用到该模型中,使得新算法有更快的收敛速度.首先,简单介绍了Chan-Vese模型的变分水平集方法的理论框架;其次,将共轭梯度算法引入到该模型的求解,得到了模型的新的数值解方法;最后,将得到的算法与传统求解Chan-Vese模
设G为简单图,若G的点子集S与图中的每个团都有非空的交,则称S是图G的一个团横贯集,这里G的团是指图中的极大完全子图且至少包含两个点.图G的最小团横贯集所含点的数目称为G的
基于矩阵方程LS+SL^T=[p,q]求解对称矩阵S,得到了唯一解的充要条件和解的递推计算式,进一步研究了逆矩阵S-1的求法,数值算例说明了递推计算式的正确性.
讨论一类Hermitian广义特征值问题A—AB,其中A和B是Hermitian矩阵,并且B的(1,1)块和(2,2)块是正定的.考虑当A和B发生Hermitian扰动时相应特征值的界如何变化.数值例子也说明了这些结果
通过递推关系归纳迭代公式的讨论,研究含多个未知数的非光滑方程组及其收敛性,并以此证明希尔伯特空间上的含参变量的实系数非线性方程组的三阶方向牛顿法的半局部收敛性,给
为了提高求解鞍点问题的迭代算法的速度,通过设置合适的加速变量,对修正超松弛迭代算法(简记作MSOR-like算法)和广义对称超松弛迭代算法(简记作GSSOR-like算法)进行了修正,给出了