基于深度学习的中文文本分类算法

来源 :计算机与数字工程 | 被引量 : 0次 | 上传用户:yaoyao1021
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对现有情感分析模型将卷积神经网络(CNN)和循环神经网络(RNN)建模分离的状况,论文提出了一种基于双向长短期记忆网络(Bi-LSTM)和CNN相结合并带有注意力机制(Attention)的文本分类模型.模型先获取上下文语义特征,再融合局部语义特征,同时对每一时刻的特征信息给予多个不同权重关注.实验表明,该模型可以有效地增强分类语义特征的捕获能力,比使用单一神经网络或者它们的任意两两组合,该模型不论在训练速度还是在预测准确度方面都有很好的改善.
其他文献
社交网络谣言转发行为是指用户是否转发特定谣言.以往研究主要针对的是谣言在群体中的传播规律,鲜有针对个体传播行为的研究.基于信息传播理论,研究首次提出两类谣言个体转发影响因素的框架:谣言发布者以及谣言内容对个体的影响力.研究使用NLP相关技术和复杂网络分析算法等技术计算出相关特征;最后使用常见分类算法进行预测用户是否转发谣言.基于数据的实验结果表明,论文提出的算法可以有效提高预测谣言转发的准确性.
为了提升表面肌电信号(sEMG)手势动作识别的准确性和训练效率,提出一种基于LightGBM的手势识别模型.传统的GBDT算法训练效率较低,准确率无法快速提升,LightGBM算法采用基于梯度的单侧采样和互斥特征捆绑改进性能,具有训练速度快、占用内存低、分类准确率高的优势.将臂环采集到的8通道sEMG数据按时间顺序进行扁平化处理,提取有效特征.实验结果表明,经过LightGBM改进的sEMG手势识别模型取得较高准确率,并且显著提升训练速度.