论文部分内容阅读
在基于统计模型的说话人识别中,需要对说话人的数据进行训练,依据某种准则确定模型的参数,用某种判决规则将未知语音参数序列分配给具有最大概率似然度的说话人模型,常用的判决规则是最大似然判决规则。但这种规则不是很灵活,有一定的局限性,该文提出一种最大均值似然判决规则,通过理论分析以及实验结果表明,在说话人辨认中MAL规则比ML规则更加有效。