基于深度学习的多模态时空动作识别

来源 :计算机系统应用 | 被引量 : 4次 | 上传用户:cairinga
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对视频理解中的时序难点以及传统方法计算量大的困难,提出了一种带有时空模块的方法用于动作识别.该方法采用残差网络作为框架,加入时空模块提取图像以及时序信息,并且加入RGB差值信息增强数据,采用NetVLAD方法聚合所有的特征信息,最后实现行为动作的分类.实验结果表明,基于时空模块的多模态方法具有较好的识别精度.
其他文献
空气质量指数(Air Quality Index,AQI)预测可以为人们日常生产活动以及空气污染治理工作提供指导.针对空气质量指数预测模型受离群点影响较大的问题,利用孤立森林算法对空气
为了更好的挖掘局部特征,提升行人再识别的精度,本文提出了一种利用水平池化提取局部特征的HPLF(Horizontal Pooling for Local Feature)算法,在ResNet-50网络中对输入的联合数据集进行预处理,提取特征,对ResNet-50网络生成的特征图进行水平切割,通过分割的特征图计算两两特征之间的距离,再用难样本三元组损失(Triplet loss with Hard