论文部分内容阅读
对文本的特征提取方法以及深度神经网络的分类器的搭建进行研究。首先,在全局和局部的特征提取方法的基础上,通过对文本特征内耦合关系和文本特征间耦合关系进行分析,确定用于分类的文本特征,建立文本特征的耦合关系模型;其次,将文本特征作为深度神经网络输入层进行分类;最后,通过逐层无监督的方式对网络进行训练,在顶层增加区分性结点来实现文本分类功能。