PARAMETERS OF WATER CIRCULATION NETWORK FOR A DISTRICT HEATING AND COOLING SYSTEM

来源 :Journal of Hydrodynamics(Ser.B) | 被引量 : 0次 | 上传用户:jweblogicdownload
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, supply water of high temperature from the network drives absorption chillers for air conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperature in the network, has a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper. In a district heating and cooling system, ie Beijing combined heating cooling and power (CHCP) system studied here, high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, supply water of high temperature from the network drives absorption chillers for air conditioning in summer and meets water heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, ie supply / return water temperature in the network, has a great impact on primary energy consumption (PEC) of the absorption chillers, which is studied in this paper.
其他文献
采用两段式被动锁模激光器结构,利用隧道结级联两组量子阱有源区,实现了一种工作在近红外波段的单片集成大功率量子阱被动锁模激光器。对该锁模激光器的锁模特性进行了表征,