论文部分内容阅读
针对传统静态神经网络自适应能力差、收敛速度慢、预测精度低的问题,提出了一种基于小波分析和Elman动态神经网络的中长期电力负荷预测方法,该算法通过对原始样本进行小波分解,将分解后的低频趋势信号和高频细节信号分别进行预测,在输出端再进行重构后得到预测曲线;然后就传统负荷预测问题中数据预处理环节的数据校验问题,提出了一种基于小波理论的奇异点检测法,该方法对原始样本进行一维离散小波分解,抽取一层高频细节信号进行分析,根据工程实践中设置的阈值,来检测有可能因为系统故障、人为失误导致的数据记录错误,为准确预测提供了