具有自适应搜索策略的灰狼优化算法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:kevil2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
灰狼优化算法(Grey Wolf Optimization,GWO)是一种新型的群智能优化算法。与其他智能优化算法类似,该算法仍存在收敛速度慢、容易陷入局部极小点的缺点。针对这一问题,提出了具有自适应搜索策略的改进算法。为了提高算法的收敛速度和优化精度,通过适应度值控制智能个体位置,并引入了最优引导搜索方程;另一方面,为提高GWO的种群多样性,改进算法利用位置矢量差随机跳出局部最优。最后对10个标准测试函数进行了仿真实验,并与其他4种算法进行了比较,统计结果和Wilcoxon符号秩检验结果均表明,所提出的改进算法在收敛速度以及搜索精度方面具有明显优势。
其他文献