论文部分内容阅读
图的广义和连通指数作为新提出的一类分子拓扑指数, 在QSPR/QSAR 中有很大的应用价值. 树图、单圈图和双圈图的极值问题已取得很多结果, 而三圈图相关问题的研究较为复杂. 限制 - 1 /leqslant /alpha 〈 0, 对三圈图的广义和连通指数进行了研究. 通过对三圈图的分析, 构造了一种图的变换, 指出在三圈图中广义和连通指数的极小值必由其中的七种类型图取得. 然后通过悬挂边的变换, 最终得到三圈图广义和连通指 数的极小值并刻画了唯一的极图.