论文部分内容阅读
为提高房地产价格预测精度,克服传统统计数据真实性低、时效性差的缺点,本文以网络搜索数据为基础,首先通过斯皮尔曼相关分析和时差相关分析筛选出与房地产价格具有高度相关性的先行关键词,并利用向量自回归模型(VAR)和GM(1.1)模型分别预测房地产价格;然后构建基于向量自回归模型和GM(1.1)模型的VAR-GM(1.1)-SVR模型将以上两个模型的预测结果进行预测融合,并以西安市数据为例进行验证,得出均方误差(MSE)和标准平均方差(NMSE)分别为0.97和0.03,优于单一模型预测效果.