论文部分内容阅读
针对最小二乘支持向量机(LSSVM)依赖人为经验选择学习参数以及基本粒子群优化算法(PSO)存在早熟收敛等弊端,通过对PSO惯性因子、加速因子以及粒子飞行速度进行动态调整,以及借鉴遗传算法变异思想引入自适应变异算子,对PSO算法进行改进,提出动态自适应粒子群优化算法(DAPSO),利用DAPSO算法优化选择LSSVM惩罚因子和核函数参数,构建DAPSO-LSSVM年径流预测模型,并与PSO算法优化选择LSSVM学习参数的PSO-LSSVM模型以及GA-BP、RBF、BP模型作为对比,以云南省某水文站年径流