论文部分内容阅读
数据收集问题是无线传感网中的一个研究热点。针对现有数据收集方法的不足,提出一种基于自回归模型的数据收集方案。首先分析感知数据稀疏性变化情况对于重构性能的影响,然后基于自回归模型对压缩感知重构问题进行建模,最后sink利用时间相关性来对重构误差进行评价,并根据重构误差要求来决定是否需要增加测量次数,从而实现对感知数据的自适应重构。仿真实验结果表明,该方法是有效的,在数据重构精度以及网络生命周期等方面要优于传统的方法。