论文部分内容阅读
为解决船舶运动过程中舵角增益不确定、运动模型参数不确定及有外界干扰的路径跟踪问题,提出一种利用径向基函数(radial basis function,RBF)神经网络逼近总未知项和舵角增益的滑模控制算法.根据反推法设计参考艏向,采用双曲正切函数设计滑模控制器,对艏向进行控制.通过MMG模型进行仿真,验证算法的有效性.仿真结果表明,所设计的控制器能够很好地跟踪参考路径,且利用RBF神经网络能够较好地逼近总未知项和舵角增益,故基于RBF神经网络设计的滑模控制器对船舶路径跟踪具有很好的鲁棒性.