论文部分内容阅读
针对室内无线传感器网络通信传输不稳定和定位精度较差的情况,提出了一种移动机器人自主动态定位系统,通过实时选择邻近信标节点,确定节点坐标构成的边界,绘制局部网格空间,实现机器人动态定位.利用接收信号强度指标实现测距,然后采用基于测距的改进近似三角形内点测试(APIT)算法完成定位,再使用卡尔曼算法修正定位误差.该方法适用于室内网络传输不稳定的实际情况,采用卡尔曼滤波器获得最优数据.实验结果表明,该移动机器人自主动态定位方法比基于网格的极大似然方法具有更好的精度和适应性.
Aiming at the instability of indoor wireless sensor networks and poor positioning accuracy, this paper proposes a mobile robot autonomous dynamic positioning system. By selecting adjacent beacon nodes in real time, determining the boundaries formed by the coordinates of nodes and drawing the local grid space, The dynamic positioning of the robot is realized by using the received signal strength index to realize the ranging, and then the APIT algorithm based on ranging is used to complete the positioning and the Kalman algorithm to correct the positioning error. This method is suitable for indoor network transmission instability , The Kalman filter is used to obtain the optimal data.The experimental results show that the proposed method has better accuracy and adaptability than the grid-based maximum likelihood method.