论文部分内容阅读
文 [1 ]探讨了直线方程x0 xa2 +y0 yb2 =1的三种几何意义 ,读后深受启发 ,作为文 [1 ]的继续本文探讨直线方程x0 xa2 -y0 yb2 =1的几何意义 .定理 1 若点P(x0 ,y0 )在双曲线x2a2 -y2b2 =1上 ,则直线x0 xa2 -y0 yb2 =1是经过点P的双曲线的切线 .这只
The paper [1] discusses the three geometric meanings of the linear equation x0 xa2 +y0 yb2 =1, and is deeply enlightened after reading. As a continuation of the paper [1] the paper discusses the geometric meaning of the linear equation x0 xa2 -y0 yb2 =1. 1 If the point P (x0, y0) is on the hyperbola x2a2 -y2b2 =1, then the line x0 xa2 -y0 yb2 =1 is the tangent of the hyperbola passing through the point P.