Excellent tribological properties of epoxy–Ti3C2 with three- dimensional nanosheets composites

来源 :摩擦(英文版) | 被引量 : 0次 | 上传用户:heroic008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
As a widely used engineering polymer, epoxy resin has been successfully employed in high-performance components and setups. However, the poor thermal and friction properties of traditional epoxy resin greatly limit its application in many extreme environments. In this work, a new kind of epoxy–Ti3C2 with three- dimensional nanosheets (3DNS) composite which was designed by freeze-drying method showed up excellent thermal and friction properties. As a result, the coefficient of thermal expansion (CTE) of epoxy–Ti3C23DNS 3.0 composites was 41.9 ppm/K at 40 ℃, which was lower than that of the traditional epoxy resin (46.7 ppm/K), and the thermal conductivity (TC) was also improved from 0.176 to 0.262 W/(m?K). Meanwhile, epoxy–Ti3C23DNS 1.0 composites showed up the best friction property, with wear rate 76.3% lower than that of epoxy resin. This work is significant for the research of high-performance composite materials.
其他文献
The mechanism of hard surfaces worn by soft polymers is not clearly understood. In this paper, a new hypothesis has been proposed, it holds that the stress acting on the hard surface under certain working conditions is the main reason for wear of the hard
In this study we present a mechanism for the elastohydrodynamic (EHD) friction reduction in steel/steel contacts, which occurs due to the formation of oleophobic surface boundary layers from common boundary-lubrication additives. Several simple organic ad
The shaft mechanical face seal in a high-speed turbopump of a liquid rocket engine often operates under extremely harsh conditions. For example, a low-temperature and low-viscosity fluid (such as liquid oxygen or liquid hydrogen) is used as a lubricant. T
Tribocorrosion denotes an irreversible material degradation for several metallic components used in corrosive environments, and it arises from the interplay between chemical, mechanical, and electrochemical processes. In this study, some investigation has
Diamond-like carbon (DLC) and graphite-like carbon (GLC) coatings have good prospects for improving the surface properties of engine parts. However, further understanding is needed on the effect of working conditions on tribological behaviors. In this stu
Although several empirical wear formulas have been proposed, theoretical approaches for predicting surface topography evolution during sliding wear are limited. In this study, we propose a novel wear-prediction method, wherein the energy-based Arrhenius e
Although grease can effectively lubricate machines, lubrication failure may occur under high speed and heavy load conditions. In this study, Mn3O4/graphene nanocomposites (Mn3O4#G) were synthetized using a hydrothermal method as lubricant additives. The l
In this study, water soluble CuO nanostructures having nanobelt, nanorod, or spindle morphologies were synthesized using aqueous solutions of Cu(NO3)2·3H2O and NaOH by adjusting the type of surface modifier and reaction temperature. The effect of morpholo
The aim of this study is to fabricate the nanocomposite with low friction and high wear resistance using binary solid lubricant particles. The microstructure and tribological performance of the nanocomposite are evaluated, and the composition and film thi
The layered double hydroxide (LDH) is a kind of natural mineral, which can also be manually prepared. It has been practically applied in various fields due to its unique crystal structure and diversity of composition, size, and morphology. In this work, L