Corrosion resistance of powder injection moulded titanium in physiologic serum and artificial saliva

来源 :金属学报(英文版) | 被引量 : 0次 | 上传用户:guohuiwh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Most of dental implants are made from titanium or titanium based alloys.However, one of the drawback of such implants is high cost due to the technological difficulties in casting method or machining.In this work, powder injection moulding(PIM) method has been used in order to explore lower cost implants without minimising the biocorrosion resistance of the titanium.Corrosion resistance of titanium specimens, produced by powder injection moulding method(PIM-Ti), in physiologic serum and artificial saliva wa...“,”Most of dental implants are made from titanium or titanium based alloys.However, one of the drawback of such implants is high cost due to the technological difficulties in casting method or machining.In this work, powder injection moulding(PIM) method has been used in order to explore lower cost implants without minimising the biocorrosion resistance of the titanium.Corrosion resistance of titanium specimens, produced by powder injection moulding method(PIM-Ti), in physiologic serum and artificial saliva was investigated.Commercially pure bulk Ti(CP-Ti) was used as control sample.Surface oxidation was also carried out to both PIMTi and CP-Ti samples.Microstructure and corrosion resistance were investigated using microhardness, X-ray diffraction(XRD), scanning electron microscopy(SEM) and potentiodynamic polarization experiments.Resulting microstructure of PIM-Ti samples contained porosity as compared to CP-Ti control samples.Microhardness of PIM-Ti samples varied with varying applied load whereas it was free from applied load for CP-Ti control samples.Polarisation measurements and SEM analysis revealed that corrosion behaviour of PIM-Ti was reasonably as good as CP-Ti both in as-produced and oxidized conditions in physiologic serum and artificial saliva in spite of its porous structure.
其他文献