Feature Construction and Identification of Convective Wind from Doppler Radar Data

来源 :气象学报(英文版) | 被引量 : 0次 | 上传用户:baobei871011
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Convective wind is one of the common types of severe convective weather. Identification and Forecasting of con- vective wind are essential. In this paper, five kinds of features are firstly constructed from characteristics of typical convective wind-related echo phenomena based on Doppler radar data. The features include storm motion, high-value reflectivity, high-value velocity, velocity shear, and velocity texture. A severe convective wind (SCW) identification model is then built by applying the above features to the random forest model. With convective wind samples collec- ted over 13 cities of China in June–August 2016, it is found that the probability of detection (POD) of SCW is 78.9%, the false alarm ratio (FAR) is 26.4%, and the critical success index (CSI) is 61.5%. For the convective wind samples that carry typical echo features, the POD, FAR, and CSI range from 89.4% to 99.3%, 4.2% to 16.0%, and 76.4% to 95.1%, respectively. Meanwhile, the POD and negative-case POD of samples without typical echo features are 66.8% and 85.4%, respectively. The experimental results demonstrate that the SCW identification model can classify non- SCW effectively, and performs better with SCW samples carrying typical echo features than without.
其他文献
2022年北京冬奥会开幕式的精彩让全球重新认识了雪花以及冰雪运动的魅力.通过人工造雪,冬奥会及各类冰雪运动更广泛地覆盖到更多的人群,但与此同时也会带来一个问题:人造雪和自然雪的运动体验是否不同?要回答这个问题,可以从雪花的形成说起.
期刊
刚刚过去的2021年,全球气象界的一个热点,是以“机器学习”(machine learning,ML)和“神经网络”(neural network,NN)等为代表的AI技术,从几年前有“炒作”嫌疑和爆炸式的登场,到开始入驻气象研究和业务各领域并产生效果和积极影响的过渡年.伴随这样的过渡,“trustworthy”一词被很多学者加在AI之前,组成“可信的AI”.强调AI技术可信,既与AI技术本身的神奇有关,还是现代气象科学本身“物理求真”的传统使然.
期刊
The undersea volcano, located in the South Pacific island nation of Tonga, violently erupted from 14 to 15 January 2022. The Tonga volcano eruption has aroused extensive discussion in the climate change field. Some climatologists believe that this event w
An exceptional rainy season occurred in the Yangtze River valley of eastern China in June–July 2020. The relative importance of the dynamic and thermodynamic effects on this unusual event is evaluated through the budget equa- tions of moisture and moist s
With the advent of the phased array radar (PAR) technology, it is possible to capture the development and evolu- tion of convective systems in a much shorter time interval and with higher spatial resolution than via traditional Dop- pler radar. Research o
In this study, the unprecedented extreme rainfall event during 19–20 July 2021, which caused devastating flooding in Zhengzhou City and its nearby areas, is examined based on observational data analysis and WRF model 40-h sim- ulations on 1-km horizontal
Northeastern China has experienced a significant increase in summer compound hot and dry events (CHDEs), pos- ing a threat to local agricultural production and sustainable development. This study investigates the detectable an- thropogenic signal in the l
While there is high confidence that human activities have increased the likelihood and severity of hot extreme events over many parts of the world, there is notable spread in quantitative estimates of anthropogenic influence even on a single event. To bet
Nowcasts of strong convective precipitation and radar-based quantitative precipitation estimations have always been hot yet challenging issues in meteorological sciences. Data-driven machine learning, especially deep learning, provides a new technical app
The classical tropical cyclone (TC) maximum intensity theory of Emanuel suggests that the maximum azimuthal wind of TC depends linearly on the ratio of surface exchange coefficients for enthalpy and momentum (Ck and Cd). In this study, a series of sensiti