论文部分内容阅读
道路井盖缺陷检测对于道路维护与安全至关重要,论文提出了一种改进的卷积神经网络算法,可实现井盖缺陷的快速、准确检测;算法对卷积神经网络的激活函数模型进行了改进,针对Relu激活函数在输入小于零时输出设为零,导致部分缺陷信息丢失问题,设计了MReLu和BReLu两种改进激活函数;在此基础上,为了增强神经网络模型的特征表达能力,提出了双层激活函数模型;最后,在公共数据集MNIST,CIFAR-10上进行了比较实验,网络主要参数有批处理大小(batch size)为32,最大迭代次数为1 000次,学习率为