Strong Goldbach Conjecture and Generalized Moser-Type Inequalities

来源 :武汉大学自然科学学报(英文版) | 被引量 : 0次 | 上传用户:sanshn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
in this paper,we consider the generalized Moser-type inequalities,say φ(n)≥kπ(n),where k is an integer greater than 1,φ(n) is Euler function and π(n) is the prime counting function.Using computer,Pierre Dusart's inequality on π(n) and Rosser-Schoenfeld's inequality involving φ(n),we give all solu-tions of φ(n)= 2π(n) and φ(n)= 3π(n),respectively.More-over,we obtain the best lower bound that Moser-type inequalities φ(n)>kπ(n) hold for k=2,3.As consequences,we show that every even integer greater than 210 is the sum of two coprime composite,every odd integer greater than 175 is the sum of three pairwise coprime odd composite numbers,and every odd integer greater than 53 can be represented as p+x+y,where p is prime,x and y are composite numbers satisfying that p,and x and y are pairwise coprime.Specially,we give a new equivalent form of Strong Goldbach Conjecture.
其他文献
止损,俗称割肉,分为主动止损和被动止损。专业人士常用“鳄鱼法则”来形象地描述止损及其重要性。“鳄鱼法则”是假定一只鳄鱼咬住你的脚,如果你用手去试图挣脱你的脚,鳄鱼便