论文部分内容阅读
模糊C-均值聚类(FCM)算法由于能够很好地解决像素分类的不确定性而得到广泛应用,但是聚类中心的初始化对其分割效果有很大的影响。文中以初始聚类中心为重点,分别用K均值算法、遗传算法、蚁群算法、粒子群优化算法优化FCM算法初始聚类中心,将优化后的结果作为FCM的初始聚类中心,并利用MATLBA软件进行了实验仿真。通过实验结果对比分析,不仅优化后的运算时间有所减少,而且所得的聚类中心更加稳定,使得分割出的目标也更加完整、清晰,验证了改进算法的有效性。