论文部分内容阅读
主要研究垃圾文本识别问题,利用苹果手机评论文本特征向量建立了SVM分类模型对垃圾文本进行识别,并与BP神经网络判别模型结果进行对比,得出苹果手机前400组训练样本的判别正确率为71%,后196组测试样本的判别正确率为70.12%.故得到,影响垃圾观点文本识别效果的主要原因为:1)评论文本的特征项的提取和文本特征空间向量求解.2)判别分类方法的选择,其中SVM文本识别效果最优.