Genome-wide identification and analysis of the regulation wheat DnaJ family genes following wheat ye

来源 :农业科学学报(英文版) | 被引量 : 0次 | 上传用户:canghaiyuemenglong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The co-chaperone DnaJ plays an important role in protein folding and regulation of various physiological activities, and participates in several pathological processes. DnaJ has been extensively studied in many species including humans, drosophila, mushrooms, tomatoes, and Arabidopsis. However, few studies have examined the role of DnaJ in wheat (Triticum aestivum), and the interaction mechanism between TaDnaJs and plant viruses. Here, we identified 236 TaDnaJs and performed a comprehensive genome-wide analysis of conserved domains, gene structure and protein motifs, chromosomal positions and duplication relationships, and cis-acting elements. We grouped these TaDnaJs according to their domains, and randomly selected six genes from the groups for tissue-specific analysis, and expression profiles analysis under hormone stress, and 17 genes for plant virus infection stress. In qRT-PCR, we found that among the 17 TaDnaJ genes tested, 16 genes were up-regulated after wheat yellow mosaic virus (WYMV) infection, indicating that the TaDnaJ family is involved in plant defense response. Subsequent yeast two-hybrid assays verified the WYMV NIa, NIb and 7KD proteins interacted with TaDJC (TraesCS7A02G506000), which had the most significant changes in gene expression levels after WYMV infection. Insights into the molecular mechanisms of TaDnaJ-mediated stress tolerance and sensitivity could inform different strategies designed to improve crop resistance to abiotic and biotic stress. This study provides a basis for future investigation of the TaDnaJ family and plant defense mechanisms.
其他文献
The rate of corn kernel breakage in the grain combine harvesters is a crucial factor affecting the quality of the grain shelled in the field. The objective of the present study was to determine the susceptibility of corn kernels to breakage based on the k
This study attempted to clarify the carrying-over effect of different nitrogen treatments applied to the main crop on the crop population growth and yield formation of ratoon rice under mechanized cultivation in Southeast China. Based on the constant tota
Nudix hydrolases are widely distributed across all classes of organisms and provide the potential capacity to hydrolyze a wide range of organic pyrophosphates. Although Nudix hydrolases are involved in plant detoxification processes in response to abiotic
Genetic linkage maps are important for quantitative trait locus (QTL) and marker-assisted selection breeding. The wolfberry (Lycium spp.) is an important food and traditional medicine in China. However, few construction genetic linkage maps have been repo
The GDSL esterase/lipase family contains many functional genes that perform important biological functions in growth and development, morphogenesis, seed oil synthesis, and defense responses in plants. The expression of GDSL esterase/lipase genes can resp
The soil-borne necrotrophic fungus Rhizoctonia solani is one of destructive fungi causing severe yield losses in various important crops. However, the host defense mechanisms against the invasion of this pathogen are poorly understood. In this study, we e
CCCH (C3H) Zinc finger (Znf) transcription factors (TFs), as a novel type of Znf gene, regulate the expression of genes by binding to their mRNAs and play important roles in plant growth and development and abiotic stress resistance. Longan (Dimocarpous l
Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) is an important cucurbit crop grown worldwide. Watermelon fruit quality, fertility, and seed-setting rate are closely related to male flower development. In this study, the different developmental st
A recent breakthrough in agricultural biotechnology is the introduction of RNAi-mediated strategies in pest control. However, the off-target effects of RNAi pest control are still not fully understood. Here, we studied the off-target effects of two insect
Auxin (indole-3-acetic acid, IAA) has a considerable impact on the regulation of plant carbohydrate levels and growth, but the mechanism by which it regulates sugar levels in plants has received little attention. In this study, we found that exogenous IAA