论文部分内容阅读
SIFT算法具有良好的图像匹配性能,是图像匹配的经典算法之一。针对传统SIFT算法在仿射变换情况下匹配效果不佳、鲁棒性弱的不足,给出一种改进的图像配准方法。首先对图像进行中值滤波处理,去除噪声。然后对图像做仿射变换,提取图像的SIFT特征点进行匹配。最后通过随机抽样一致性方法消除匹配后初始匹配点中的错误匹配点,提高匹配精度。实验结果表明,与SIFT算法相比,提出的方法具有更好的仿射不变性,在平移、旋转、仿射变换情况下均能得到较高的匹配精度,并且有较好的鲁棒性。