例谈如何用数学直觉思维巧解题

来源 :语数外学习(高中版中旬) | 被引量 : 0次 | 上传用户:jfhz2001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数学直觉思维是指不受固定逻辑规则的约束,对事物迅速识别,未经一步步的推理、分析和清晰,就能对问题突然领悟、理解或给出答案的思维,我们通常把直觉、预感、猜想、假设、领悟等都视为直觉思维。直觉思维对学生的数学思维能力、学习数学的悟性十分重要。正如爱因斯坦所说:“真正可贵因素是直觉。”下面笔者就在数学教学中运用数学直觉思维解题作初步的探讨。一、整体分析,直觉洞察 Mathematical intuition thinking refers to not being fixed by the rules of logic constraints, the rapid identification of things, without a step-by-step reasoning, analysis and clarity, you can suddenly understand, understand or give the answer to the problem of thinking, we usually intuition, premonition , Conjecture, hypothesis, comprehension and so on are regarded as intuitive thinking. Intuitive thinking is very important for students’ ability of math thinking and learning math. As Einstein said: “The real thing is intuition. ” The following author in mathematics teaching using mathematical intuition thinking to make a preliminary discussion. First, the overall analysis, intuitive insight
其他文献