中数不等式的高数解读与教学建议

来源 :数理化解题研究·综合版 | 被引量 : 0次 | 上传用户:huangma2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要:中学教育改革的深入以及高等教育的普及化,使得高等数学与初等数学之间的界限逐渐模糊,因此用高等知识与方法审视中学数学逐步成为教学研究的普遍关注点.基于这样的理解,笔者以不等式为例,对高等数学视角下的中学数学知识学习与问题解决展开了研究和思考,阐释了运用高等数学的知识与方法审视中学数学的知识学习和问题解决的意义,整理了不等式中中学数学与高等数学常用证明方法,并比较高等数学与中学数学在不等式的证明求解过程中的差异,进而给出了以“合理前凸”、“奠定基础”为基本原则的教学建议.
  关键词:不等式;中学数学;高等数学;解读;教学建议
  中图分类号:G632      文献标识码:A      文章编号:1008-0333(2021)24-0024-03
  收稿日期:2021-05-25
  作者简介:黄燕红(1994.2-),女,硕士,福建省厦门人,中学二级教师,从事数学教学研究.
  随着时代的需要和课程的改革,中学教材中逐渐出现高等数学中一些基础知识,也渗透着经典高等数学的思想和方法,以考察学生的学习潜力和培养学生的思维能力.关注近几年的高考试题,为了实现高考的选拔功能,往往考查一些基于高等数学背景的问题,并且这些问题通过转化总能用中学知识与方法求解.因此在实现对学生知识传授的完善外,要如何对中学数学知识进行高观审视的同时又不忽视双基的学习与巩固,已经成为一线教学关注的焦點.
   一、中学数学中不等式的常用证明方法
  1.用综合法和分析法证明不等式
  综合法是基于所给的已知条件或者某些定义、定理、公式,经过一系列的推理论证,最后推出题目所要证明的不等式成立.分析法则是从题目给定的结论入手,进行逆向推导,使得每一步都要是上一步的充要条件,最终达到题目给出的已知条件. 2.用放缩法证明不等式
  在证明过程,对不等式一端进行恰当的放大或缩小.利用此方法来证明不等式的技巧性很强,主要是寻找中间变量c,使得a<c<b成立,通过c的过渡,使a与b之间间接地建立起不等式关系.
  3.反证法证明不等式
  反证法在证明不等式问题中也被经常使用.当用此方法来证明不等式时,第一步,假设题目中的结论不成立;第二步,依据题中所给条件,结合相关的概念和性质,逐步导出与这些概念、定理、性质、已知条件中的任一个都矛盾的结果,从而肯定原结论是正确的.
  4.数学归纳法证明不等式
  一般来说,不等式的证明都要经过复杂的变形、运算,但通过不等式巧妙变形并且引用一些众所周知的结论比如上述说的柯西不等式定理或者伯努利不等式定理加以演算,不仅方法新颖,而且简单明了.
  2.利用微分中值定理证明不等式
  利用微分中值定理为不等式的证明带来了许多方便之处.如果不等式经过简单变形后,与任一定理结构相似,就可以在所给区间上构造一个函数,保证该函数符合中值定理可实现的前提条件.其中的关键是对ξ点的处理,分析函数或者导数在该点的性质即可得到结论.
  3.泰勒展开式在不等式中的应用
  泰勒展开式证明不等式虽然步骤比较复杂,但是准确率较高.具体做法为在区间内的一些特殊点(端点、中点、零点)展开函数fx,发现其余项在ξ点具备的性质,得到结论.
  4.概率在不等式证明中的运用
  在概率论中,所有事件的发生概率都处于0与1之内,则有了不等式的存在.解决这类变量取值在0与1之内的不等式,通常要完成一个不等式问题与概率问题的转变,也就是将这些变量当相关事件的概率,应用概率相关知识来解不等式问题.此种做法的主要步骤分析数学问题的种类,找到匹配的概率模型,依据两者的概念和性质来解答.
   三、不等式证明在中学数学和高等数学中的差异
  通过例题可见,在《课程标准》的指导下,许多中学不等式试题的命题设计往往以高等数学的某些内容为背景,通过对高等数学的一些问题进行改造和转化,使得问题均可以用中学的方法来解决,立意虽高,但落点低,需要学生扎实的基础以及一定的逻辑思维能力.
  在中学数学领域,不等式的解题步骤经常显得繁、难、偏.因为题型多变、解题方式变通性强,加上无固定的规律可循,因此,解题的关键就落到不等式的基本定义和性质上来,只有基础打的牢,才能达到活学活用的效果.事实上,也正是因为不等式证明求解中技巧性高、综合性强的特点,给学生学习带来一定的难度,所以课标课程对不等式学习要求有所降低.
  在高等领域,解题方法通常是,运用精确的定义对高中的某些结论进行证明,这是一个里程碑式的飞跃,而且大学的证明方法更加简便快捷,使我们一目了然,不等式证明过程虽然简洁明了,但技巧性强.在证明过程中能够更加重视理论推导和抽象思维.因此,在解答题目的时候,应重视解题策略的使用.  四、教学建议——“合理前凸”与“奠定基础”
  “合理前凸”指教师应该从中学教学大纲和教材出发,以应用广泛且易于理解的高等数学内容为背景,用高等数学观点做必要的拓展,如在知识联系面上常规方法的综合运用拓展,题型创新程度上的拓展,而非偏离教学大纲的拓展,不可走形式主义,生搬硬套地将高等数学的知识下放,异化成教材的扩充教学.
  “奠定基础”指教师教授新知时对相关旧知识进行回顾,适时地对中学数学问题系统地加以思想上的总结和数学方法方面的提炼,使得中学数学中存在的松散状态得到改善,帮助学生改变题海战术,引导学生构建属于自己的解题和学习方法.
   五、教学策略应用
  教师要适时地用较高的观点来解释和研究中学数学中的问题.同时要注重比较、回顾已学知识来统一数学中比较松散的体系,不要一味追求高观点而忽视双基的巩固.教师可以在讲授新课或者平时的习题讲评中把涉及到的高数背景并联系以往的旧知讲解给学生听,这不仅能为学生奠定基础还能提高一定的数学素养,提高思维能力.以下通过案例说明“合理前凸”、“奠定基础”教学策略的应用.
  案例1 基本不等式
  案例评说 在本案例中,以柯西不等式为桥梁,充分体现了合理前凸,奠定基础的教学策略.通过概率中平均值与方差的性质和关系来证明不等式,不仅巩固了概率相关知识也促进新知识与学生认知结构中的已有的知识网络的融合.在不影响学时并在学生能够接受的范围内,引入高等数学中n维向量内积,拓展了学生数学视野、丰富了学生的数学解题方法.
  总之,合理前凸,奠定基础的教学策略,能够潜移默化地帮助学生初步认识初等和高等知识间密切的关联,进而在恰当的时候养成用高等知识审视中学知识的习惯,在思维方式上,达成现代与经典数学之间的相辅相成,能使学生头脑中的知识结构更加细节化,整体化.教师通过梳理中学数学和高等数学中相关联的知识,将这二者的思维方法有机结合,运用在课堂中,不仅能使学生接受高等知识的同时,巩固初等知识,也有利于教师提升教学水平和科研能力.
   参考文献:
  [1]中华人民共和国教育部制定.普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.
  [2]林木元.加强高等数学与初等数学教学联系的意义和设想[J].广西高教研究,1997(1):58-59.
  [3]王苹,吴海燕.论高等数学教育和初等数学教育的互动[J].科技教育,2008,10(28):195-196.
  [4]张惠淑.高中数学不等式高考试题分析与教学策略研究[D].天津:天津师范大学,2012.
  [5]李云杰.“高观点”下的中学数学的实践与认识[D].福州:福建师范大学,2005.
  [6]任念兵.高等数学背景下的高考不等式问题[J].数学教学研究,2006(3):21-23.
  [7]任文龙,王奇,李慧.高观点下的初等数学不等式[J].甘肃联合大学学报,2008,22(5):50-52.
  [8]郭丽云.“高观点”下的中学数学问题分析及教学探索[D].上海:华东师范大学,2010.
  [责任编辑:李 璟]
其他文献
摘 要:随着新课程改革的不断深入和推进,教育重点慢慢发生了改变,传统的教学更注重学生的成绩提升,忽略了学生的德育发展,所以传统的教学是不适用于现在的教学的,而且存在许多问题。现代的教学开始渐渐重视德育,旨在让学生更好的发展。在小学语文教学过程中,语文作为小学生的重要基础科目,对于学生的一生都有着巨大的影响,所以在小学语文的教学过程中渗透德育是非常重要的,如何有效渗透德育是当下每个教师都应该思考的问
摘 要:常用逻辑用语是逻辑思维的基本语言,是数学表达和交流的工具,也是高考命题的热点.通过对近几年全国各地高考试题中常用逻辑用语内容的分析与解题方法的研究,明确在高考中这部分内容考什么、怎么考和怎么答.  关键词:高考;常用逻辑用语;题型;解题策略  中图分类号:G632 文献标识码:A 文章编号:1008-0333(2021)22-0008-03  收稿日期:2021-05-05  作者
摘 要:文章给出了三角形“五心”的坐标公式.  关键词:三角形;“五心”;坐标公式  中图分类号:G632 文献标识码:A 文章编号:1008-0333(2021)22-0015-02  收稿日期:2021-05-05  作者简介:甘志国(1971-),湖北省竹溪人,研究生,正高級教师,特级教师,湖北名师,从事高中数学教学研究.  基金项目:本文系北京市教育学会“十三五”教育科研滚动立项课
摘 要:在信息化时代背景下,信息技术已经得到了普遍性的运用,将信息技术运用在教育领域已经成为了教师教学的一种新态势,是教育信息化发展与变革的需求.信息化教学资源作为教育信息化技术中的重要组成,将其运用在初中数学教学中,有助于帮助初中生更好地理解数学知识,帮助教师攻克数学教学难点,从而达到提升数学教学实效性的作用.基于此,围绕信息化教学资源在初中数学教学中的运用进行了分析,旨在发挥信息化教学资源的优
摘 要:立体几何是高中数学的重点知识,习题情境灵活多变.为提高学生解题思维的灵活性,使其在解题中能够举一反三,应积极组织学生开展解题教学实践活动,使其积累各种解题经验与技巧,促进其解题水平的进一步提升.  关键词:高中数学;立体几何;解题教学;实践  中图分类号:G632 文献标识码:A 文章编号:1008-0333(2021)24-0022-02  收稿日期:2021-05-25  作者
摘 要:  随着我国的经济、文化高度发展,我国的教育制度也在不断地完善.很多创新的教育理念正在深入各个教育阶段,不同的教育阶段有不同的侧重点.高中数学侧重于学生的理解能力和解题能力,合理的利用网络资源,能够帮助学生提高学习效率,而对于高中数学教学而言,数学需要的是抽象思维,而学生有时候并不能及时的将抽象化为具体事物,通过网络教学,可以培养学生的空间感,帮助学生培养数学思维.  关键词:网络学习;高
大连教育家冷冉先生在20世纪80年代初首次提出“情知教学”,将“认知心理因素(感知、注意、记忆、思维和想象)”和“情性心理因素(动机、兴趣、情感、意志和性格)”结合起来。冷冉先生认为“情绪、性格”过程才是学生学习的基础,我们应该从情绪入手“教会学生学习”,并强调要引导学生“在学习过程中像科学家那样感受、思考、想象和创造”。   信息技术教学中如何落实情知教学相关要求,试述如下。   一、导入 
期刊
摘 要:中华文化源远流长,历久弥新。在当前教学形势下,班主任不仅需要对学生进行理论知识的教育,同时还需要加强对学生思政方面的教育,提高学生的素养和思想,以便培养学生树立正确的人生观。主要对小学思政教育进行分析,并就如何利用传统文化对学生进行思想教育,提出相关策略。   关键词:班主任;传统文化;思政教育   对小学生来说,他们年龄比较小,思想还不成熟,很多时候都是以自我为中心。因此,为了提高小学
摘 要:班主任需要在教育过程中针对不同情况采取灵活多样的教育方法来纠正学生的不良行为。面对一些犯错误的学生,班主任要及时“应变”与“自控”,做到有艺术地处理。   关键词:应变;自控;班主任;班级管理   小学班主任作为班级中的核心人物,是班级的重要领导者和建设者,由于小学生在学校和班级的时间较多,跟班主任接触时间较长,班主任在学生心里有很高的地位,因此班主任对小学生有很大的影响。在班级管理的过
摘 要:伴随我国物质文化水平的不断提高,社会对学生的德育也越来越重视。小学是培养学生综合素质的起始阶段与关键期,在这个过程中,学生的各种价值观念与行为习惯也在逐步成型。小学班主任作为学生日常学习生活中接触最为密切的人,是学生重要的引路人,小学班主任要做好学生的德育工作,帮助学生树立正确的人生观与价值观,培养小学生良好的行为习惯与思想品德,全面有效地提升学生的综合素质,为学生日后的发展打下重要的基础