论文部分内容阅读
本文开发了一种新型多丝GMAW工艺—集成环列三熔化极气体保护焊。如将其中一个熔化极换为冷丝(不起弧),便衍生出另一种新型焊接工艺—双电弧集成冷丝复合焊,该焊接工艺兼具既增加焊接熔敷率又保持焊接热输入基本不变的特点,这有利于热敏感性材料的高效焊接。全文主要围绕上述两种焊接方法的工艺特点展开研究分析,为三丝高效焊接工艺的制定奠定了基础。首先,考虑到三根焊丝同时燃弧时的电弧干扰问题,提出了三个电弧间的脉冲协同控制,即基于三台电源间彼此通讯功能实现任意相位差的脉冲波形输出。分别研究了三种典型的脉冲相位差0o、180o及120o时焊接电参数对熔滴过渡及焊缝成形的影响规律,并分别得到了合理的工艺参数区间。同时,还针对脉冲相位差对熔滴过渡及焊缝成形的影响机理展开研究分析,试验发现,脉冲相位差会对电弧的电场强度产生影响,0o相位差时电弧电场强度最大,180o时次之,120o时最小,因此0o相位差时容易出现多脉一滴过渡。而180o和120o相位差时更易呈现一脉一滴过渡,同时,焊接过程的稳定性及焊缝成形得到了明显改善。此外,180o相位差时的熔深最大,120o时的熔深次之,0o时的熔深最小。其中120o相位差时焊缝横截面形貌呈现“双峰状”。其次,分别针对两熔化极通以同向直流电、同相及反相脉冲电流时,焊接电参数对熔滴过渡及焊缝成形的影响规律展开研究分析。试验发现,直流模式下过渡类型分为短路和大滴过渡;同相脉冲电流模式下的理想过渡类型为一脉一滴过渡;反相脉冲电流模式下的理想过渡类型为射流过渡。同时,还研究了燃弧形式对熔滴过渡类型及焊缝成形的影响机理,当其余焊接参数不变时,同时燃弧时更易呈现射滴过渡,而交替燃弧时更易呈现射流过渡。其主要原因是由于燃弧形式会影响弧柱区的电场强度以及作用在熔滴上力的方向。此外,同时燃弧时焊缝熔深更大而熔宽略小,由于两电弧相互吸引,容易导致焊缝熔深偏向某一侧。交替燃弧时,两个电弧交替产生的电弧力分别作用于熔池,形成了“双峰状”的横截面形貌。最后,围绕双电弧集成冷丝复合焊中,冷丝对焊接过程的作用机理展开研究分析。试验发现,冷丝除了增加焊接熔敷率,还对改善焊接过程稳定性起到了重要作用。冷丝的加入可以使阴极斑点稳定在熔池表面的某一位置,而不随熔池向后流动而漂移。这样有助于减小两引导电弧电压的波动,从而提高了焊接过程的稳定性。并且通过假设检验的方法充分验证了上述结论。