面向等离子体用W-Cr系复合材料的制备及其性能研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:ynshisss
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钨具有高熔点、高热导率、低氢滞留量、低热膨胀率等优异综合性能,因此被认为是面向等离子体第一壁的最有前景候选材料。合金化是最常用的改善钨基体材料性能的手段之一。本文首先通过机械合金化和放电等离子烧结方法制备了W-Cr合金,探索了掺杂Cr元素对W基合金组织结构、高温辐照行为和高温氧化行为的影响。然后向W-Cr合金中添加金属间化合物WSi2,研究了WSi2添加量与材料抗高温氧化性能之间的关联性。最后通过悬浮熔炼的方法将Ta、Ti、V元素同时掺杂W-Cr合金制备了WCr Ta VTi高熵合金,并对其组织结构及力学性能进行表征。主要研究结果如下:(1)掺杂Cr元素显著提高了合金的烧结致密度和显微硬度。W-20Cr合金中半共格析出相Cr-O提高了合金的晶界强度,样品的断口形貌从典型的沿晶断裂变成了穿晶断裂。高温氧化实验结果表明W-20Cr合金具有更好的抗高温氧化性能,在高温氧化过程中,烧结态原始组织中富钨相对合金的抗氧化性能及其不利,此外氧化层中Cr2WO6和Cr WO4有利于提高W-Cr合金的氧化层的稳定性,从而抗高合金的抗高温氧化性能。(2)低剂量He离子辐照实验结果表明,钨基材料表面出现了三种不同的损伤形貌:W基体表面呈台阶状、Cr-O区域存在大量纳米颗粒、W-Cr-O混合区域呈疏松层片状,W基体表面未形成FUZZ结构。在高剂量辐照样品的中心区域,钨基体表面结构疏松。少量的纳米FUZZ结构出现在钨基台阶状结构边缘处。掺杂Cr元素有效地推迟了W基合金纳米FUZZ结构的形成。半共格析出相Cr-O的存在提高了W-Cr合金的抗辐照性能。(3)通过机械混粉和放电等离子体烧结的方法制备了(WSi2)x(W0.67Cr0.33)y合金。随着掺杂WSi2含量增多,(WSi2)x(W0.67Cr0.33)y合金的抗高温氧化性能逐渐下降,合金中形成了粗大的Si O2相,Cr、Si元素发生偏析生成Cr Si3。(WSi2)0.01(W0.67Cr0.33)0.99合金具有最优异的抗高温氧化性能,在1000°C循环氧化15小时后,氧化增重仅为纯钨氧化增重的16.8%。(4)真空悬浮熔炼方法制备了等摩尔比的五元(W,Cr,Ta,V,Ti)难熔高熵合金。合金组织主要由BCC固溶体和Ti3O5两种物相组成。WCr Ta VTi在高温下合金仍保持较高强度,与传统合金相对比具有更强的抗高温软化能力。合金的热导率和热扩散系数随着温度升高而增加。
其他文献
传统各向同性几何形状的磁性/介电复合的核/壳纳米结构吸波材料普遍因其较高的复介电常数(εr=εr′-jεr″)和较低的复磁导率(μr=μr′-jμr″),从而形成反射率较高的输入阻抗,严重阻碍了其发展和应用。一维和二维纳米磁性材料因其较大的形状各向异性,在提高磁导率的同时也增强了自然共振,因而可以突破Snoek极限,性能优于各向同性磁性核心。本文在保证核/壳纳米胶囊高介电常数的情况下,研究利用各向
激光熔覆技术作为一种新型的表面改性技术,能显著改善基材的表面性能。本文将激光熔覆技术应用于镁合金的表面改性,通过预置铝硅、稀土氧化物粉末进行激光熔覆,探究了激光扫描功率、激光扫描速度、稀土氧化物对改性层组织与性能的影响。对镁合金进行激光熔凝处理,可成功制备成形良好无缺陷的改性层,改性层与基体的结合区域为柱状晶组织,而内部区域为等轴晶组织,细小的Al12Mg17弥散分布在长条状α-Mg晶界处及晶间.
本课题以超薄壁耐压铝合金筒为研究对象,在ABAQUS中建立了符合实际工况的芯模自转正旋有限元模型。对比超薄壁筒及厚壁筒冷强旋成形时的变形差异性,分析超薄壁铝合金筒冷强旋成形的机理,发现超薄壁铝合金筒在旋压成形时因壁厚较薄,厚向变形更均匀,筒坯的内外层金属几乎同时变形。此外超薄壁筒结构刚度差,变形约束少,接触区两端易翘起,而导致一系列旋压失稳现象。贴模失稳是长期困扰该产品稳定连续生产的技术攻关难题,
W-Cu复合材料是由金属W和金属Cu组成的一种假合金,它兼具W和Cu的部分特性,在保持高强度,高硬度的同时拥有优异的导热和导电性能,被广泛应用于制备电接触材料部件,耐高温器件和电子封装及热沉元器件。W和Cu不能互溶形成固溶体,且两者浸润性较差,熔点差较大,所以传统粉末冶金法难以制备出全致密的W-Cu复合材料。因此,如何提升材料致密度,降低烧结温度,提升W-Cu复合材料的综合性能是W-Cu复合材料的
结合课程思政的内涵,分析思政教育融入护理专业课程教学的必要性,总结现状,提出存在的问题及解决措施,以期为护理专业课程思政的开展提供理论和实践依据。
镁合金具有密度小、比强度高,等优点,在地壳中占比高,资源丰富,被誉为“21世纪的绿色工程材料”,在很多领域如3C电子、航空航天、汽车制造等领域具有广泛的应用市场。但镁合金为密排六方结构,滑移系少,成型能力差,探索高强度高塑性的镁合金的制备工艺具有重要的意义。大量研究表明,细化晶粒可以同时提高材料的强度和塑形。利用大塑性变形加工方法可以有效细化镁合金组织,本课题分别探索搅拌摩擦加工、表面机械研磨处理
高熵合金理念的提出,使人们看到了结构材料的新的发展趋势,尤其是具有高强度、高硬度以及优异的高温力学性能的高熵合金,不仅在科研领域具有很高的学术价值,在工业生产和工程应用中也拥有广阔的前景。然而,高熵合金作为一个新的合金体系,虽然近年受到了国内外学者的广泛关注与研究,并取得了一定的科研成果,但相对于传统合金的发展历程而言,对高熵合金的研究才刚刚起步,其理论研究和实验结果都相对较少。人们对高熵合金合金
金属玻璃因其优异的力学与理化性能被广泛关注。然而,块体金属玻璃(BMGs)的脆性及成型困难,极大地限制了其实际应用的拓展。为了克服这两方面应用瓶颈,笔者所在团队发明了高流变成型方法(HRRF),该方法可在毫秒级时间内完成BMGs构件的成型,同时可有效提高其塑性。为了进一步完善该方法,本文以Zr57Cu20Ni8Al10Ag5等非晶合金为主要研究对象,深入探索了HRRF不同工艺条件及成型构件因素对力
本文以熔铸的低温CuAlMnNi形状记忆合金为研究对象,利用OM、SEM、XRD、硬度测试、室温循环拉伸及DSC等手段研究了时效处理对合金的显微组织结构、力学性能、超弹性及相变性能的影响规律。研究结果表明:熔铸的CuAlMnNi合金属于亚共析成分,其铸态组织中分布着大量的α相。经过固溶淬火处理后,合金显微组织最终转变为单一的β相,主要为L21结构。合金在200~400℃时效处理时,合金中会析出细小
随着科技的不断发展,难熔金属钼材料在航空航天、国防军工、核物理领域得到了越来越广泛的需求,与此同时,对于钼材料的性能也提高了更高的要求。目前,钼的制备以粉冶方法为主,但存在晶粒粗大,致密度不高等问题,常用的解决办法是进行轧制、挤压等二次加工。但是由于钼的难变形特点,仍旧不能完全解决其存在大量缺陷的问题。高压扭转工艺(HPT)是一种典型的大变形方法(SPD),其变形过程会发生剧烈的剪切变形作用,能够