高品质因子谐振型介质超表面的研究及应用

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:lily009009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超材料凭借优异的光学特性如人造磁性、负折射率等,近十几年来在诸多领域获得广泛关注。不同于自然界传统材料,超材料的光学特性是由构成其结构的人造单元所决定,超材料为研究人员提供了极大的自由度,通过改变结构单元的形状、材料、周期大小或周期数来实现所需要的特性。超表面是三维超材料的二维化,为避免超材料复杂的加工工艺而衍生出来,超表面制备工艺简单,可以灵活调控光场特性,如金属结构单元组成的金属超表面,可以实现对入射光偏振、相位和振幅的调控。随着超表面的研究进入近红外和可见光波段,金属的本征损耗问题日渐凸显变得无法忽略。介质超表面的提出避免了金属超表面的损耗问题,介质超表面结构功能设计的理论基础为米氏散射。根据工作原理不同,介质超表面可以分为两类:一是相位梯度超表面,梯度超表面通过在亚波长尺度引入相位梯度实现对光场的调控,光束偏折特性遵从广义斯涅耳定律;二是谐振型超表面,谐振型超表面利用谐振特性实现光场增强,凭借小腔模体积、高品质因子以及集体相干共振特性,谐振型超表面可以有效增强光与物质相互作用以及抑制辐射损耗。随着介质超表面研究的日益深入,极高品质因子谐振可以通过打破超表面结构单元对称性激发,原因是结构对称性打破,超表面中完美的连续域束缚态(BICs)模式转为准BICs模式同时保持高品质因子。
  本论文围绕着高品质因子(Q值)谐振型介质超表面的设计与制备开展一系列仿真优化与实验摸索,成功制备出高Q值谐振型介质超表面,探索高Q值谐振型超表面在折射率传感上的应用,创新性的将高Q值谐振型超表面用于增强二维薄膜材料与硅缺陷的发光。具体研究内容如下:
  (1)提出一种基于氮化硅材料的高Q值超表面结构,详细分析超表面高Q值谐振特性的形成机理以及超表面结构参数对Q值的影响。最终完成超表面样品的制备与测试,得到Q值约16670,透射谐振峰消光比约12dB的超表面器件。超表面结构单元体积和周期的变化可以调节超表面Q值和谐振波长,为后续实验奠定了基础。
  (2)基于高Q值介质超表面,利用高Q值超表面的窄线宽谐振特性探测外界折射率变化。当外界折射率变化时,超表面谐振峰位置与消光比会发生改变,对比折射率变化前谐振峰位置与消光比,得出折射率传感品质因子,最终得到超表面的折射率传感品质因子可达367。而且,外界折射率变化时,超表面谐振峰位置与谐振消光比大小会同时变化,具有双变量探测的潜力。该高Q值超表面器件可以应用在传感领域。
  (3)创新性的将高Q值谐振型超表面与二维薄膜材料结合,提高二维材料发光效率,在玻璃衬底上沉积氮化硅薄膜制备高Q值孔型超表面样品,通过周期调节将超表面谐振峰移至可见光波段。在超表面样品上分别转移MoS2和WSe2薄膜材料,在室温连续光泵浦下,超表面谐振峰处对MoS2和WSe2薄膜的发光增强均超过30倍。该高Q值超表面器件可以应用在薄膜材料发光增强领域。
  (4)提出一种基于SOI的非对称孔型高Q值超表面结构,原理是通过打破对称性将完美束缚的BICs模式转为准BICs模式同时保持高Q值,仿真上Q值可以超过1×108,详细分析了高Q值谐振的产生机理。最终在220nm的SOI材料上完成超表面样品制备,将非对称孔型超表面谐振峰移至1278nm处,增强超表面非对称孔刻蚀过程形成的碳-碳对缺陷(G-center)发光,最终对G-center发光峰的发光强度增强40倍,在低功率密度下发光峰出现类似于极低阈值激光器的线宽缩窄和超线性功率依赖特性。该高Q值超表面器件可以有效增强G-center发光,在硅基光源领域有着极大的应用潜力。
其他文献
光纤网络是现代化通信的重要组成部分,然而层出不穷的光纤窃听事件和飞速发展的窃听技术,已经严重威胁了光纤通信的安全,光纤通信的信息安全成为人们最为关注的问题。随着计算机计算能力的提升,基于传统加密算法的信息安全技术安全性受到挑战,光纤通信系统的安全性无法得到保证。光纤物理层防护技术通过光学器件的物理特性和超快光学信号处理方法,可以在物理层上实现光信号的信息安全,解决传统加密算法面临的挑战,是实现安全光纤通信系统的有效方法。然而随着5G时代的到来,数据中心通信速率已从单通道10Gb/s向100Gb/s甚至40
钙钛矿太阳能电池具有可溶液加工,低成本,光电特性优异等优点,近十年来飞速发展,目前小面积(<1cm2)器件的认证效率已经超过25%,未来有望实现商业化。在钙钛矿太阳能电池中,制备高质量的钙钛矿吸光层是实现高效稳定器件的关键。通常钙钛矿前驱体中含有化学活性基团,如有机胺等,因此探究钙钛矿与下层功能层之间的作用,以及如何利用界面调控来制备高质量钙钛矿薄膜是进一步提高器件性能和稳定性的关键。在本论文中,以反式平面钙钛矿太阳能电池为研究对象,主要研究钙钛矿薄膜与下层高分子空穴传输层之间的相互作用,以及对器件性能参
金属卤化物钙钛矿材料由于其优异的光电特性和可溶液法制备的特点,引起了科研工作者们的广泛关注。经过近十年的发展,单结钙钛矿太阳能电池的实验室公证效率已经达到了25.2%,具有广泛的应用前景。然而,稳定性等问题仍然制约着钙钛矿太阳能电池的产业化发展,基于TiO2/ZrO2/C三层介孔膜结构的可印刷介观钙钛矿太阳能电池具有良好的结构稳定性,通过改善钙钛矿吸光材料在介孔膜中的结晶可获得高效稳定的钙钛矿太阳能电池;另一方面,二维钙钛矿材料通常具有良好的材料稳定性,通过构建二维/三维复合钙钛矿材料可有效提升钙钛矿太阳
随着5G时代的到来,物联网智能系统得以迅速发展,物联网设备的需求量呈现出指数增长的趋势。传感器节点作为物联网系统的基本保障,其能源的长期稳定供应是需要解决的关键问题之一。在难以进行电能接入的传感器节点,利用太阳能电池的高功率密度优势,并结合锂电等储能技术,是解决能源供给最有竞争力的技术之一。无机薄膜太阳能电池因轻薄、稳定性好以及弱光性能优异等特性,能够很好地服务于物联网传感器节点,满足其长时间工作
发光材料的应用领域涵盖了照明、显示、医疗、交通等各个方面,与人类的日常生活息息相关。不同的发光材料拥有不同的发光机理和发光特性,对应着各自的优势应用领域。因此,深刻理解材料的发光机理和发光特性,有利于找到其具有特别竞争力的应用领域。当材料具有强的电子-声子耦合效应时,光激发很容易引起晶格畸变,从而捕获光生电荷,形成高度限域的自限域激子(STE)。相比于自由激子发光,目前对于STE发光的机理研究、性质调控及应用探索都处于起步阶段,亟待深入研究。本课题以Cs2AgInCl6为研究对象,率先将STE概念引入到全
固体激光器在工业领域、医疗领域、科学研究领域及国防军事领域有着极其重要的应用。掺钕固体工作物质的吸收谱与激光二极管(laser diode, LD)的输出波长匹配,适合采用LD作为其泵浦源。LD泵浦的掺钕固体激光器具有效率高、结构紧凑和工作寿命长的优势,且是四能级系统,激光阈值低。克服热效应的限制而提高固体激光的输出功率以及通过激光脉冲技术产生短脉冲激光一直备受研究者的关注。本文针对于LD泵浦的Nd:glass锁模飞秒激光器、LD泵浦的声光调QNd:YAG纳秒激光器及LD泵浦的半导体可饱和吸收镜(semi
以高清视频、云计算、云存储、虚拟/增强现实等为代表的互联网应用的发展促进了网络流量的持续快速增长。随着第五代移动通信与物联网的逐渐普及,海量终端进入互联网,导致链路需求日益多样化,且多数流量将靠近用户端。持续增长且多样化的流量给以数据中心网络与内容分发网络为代表的成本敏感的中短距离(<80km)光纤通信网络带来巨大的压力。低成本、灵活、大容量的传输技术将有助于应对这些挑战,并为下一代光纤通信系统提供技术解决方案。本论文针对中短距光纤通信中主流的低成本直接探测系统,从调制与编码的角度出发,提出了多种基于多载
涡旋光束具有螺旋型的波前相位且能够携带轨道角动量,尤其是完美涡旋光束,其亮环半径不随拓扑荷数的变化而变化,在粒子操控、光学通信、量子光学以及激光制造等领域得到广泛应用。目前涡旋光束通常采用螺旋相位板、空间光调制器或者数字微镜器件等设备来实现。基于双光子吸收的激光直写技术,具有突破光学衍射极限的加工精度以及制备任意三维结构的加工能力,在微光学器件、微流控器件以及生命科学等领域具有广泛应用。本论文提出了利用双光子吸收的激光直写技术制备多种螺旋相位板,并对其光学特性进行了研究。
  论文主要工作包括以下几
在现代社会中,随着信息密集程度的日益增加,通信技术必须不断快速发展才能满足信息爆炸式增长的需求。在通信不断地向更高频段的拓展过程中,由于传统电子器件本身的局限,对高频微波信号的传输和处理都存在着极大的挑战。电子器件处理高频信号的带宽和采样速率都受到限制,高频微波信号在大气和同轴电缆中传输损耗大。光通信技术有着传输损耗极低、带宽大、抗电磁干扰能力强等先天优点。因此,借由光子技术来产生、传输和处理微波信号的微波光子学应运而生。
  作为信号处理中的核心器件,微波光子滤波器是微波光子学研究的一个重要分支。
氧化硅材料由于光学吸收系数较低且易于加工,是制备超高品质因子(Quality factor,Q)微腔的理想材料。氧化硅回音壁模式光学微腔具有超高Q值和小模式体积,在高灵敏度传感、微型激光器、非线性光学、腔光力学和腔量子电动力学等领域有广阔的应用前景。然而,氧化硅微腔在应用上也存在一些挑战:在掺铒氧化硅微腔方面,如何进一步提升其Q值;在氧化硅微腔的调控性能方面,如何在保持其超高Q值的同时实现高效调控。
  本文研究了功能化的氧化硅回音壁模式微腔,实现了高效的全光调控,拓展了其在微型激光器、非线性光学等