【摘 要】
:
工业机器人是智能制造的重要基础,广泛应用于汽车、电子与轻工生产线上。控制系统是工业机器人的灵魂核心,其性能决定加工质量与运行效率。由于机器人是关节运动系统,运动惯量随运动位姿变化而改变,其关节力矩耦合度高,当高速、重载和臂展变化大时,其惯量变化大,非线性效应显著。使用常规的PID控制方法时,为保证稳定性只能使用保守的控制参数,由此导致动态特性差,轨迹误差大和定位效率低,系统性能不能发挥。为此,本文
【基金项目】
:
华中科技大学鄂州工业研究院项目《工业机器人关键技术产品研发及产业化》;
论文部分内容阅读
工业机器人是智能制造的重要基础,广泛应用于汽车、电子与轻工生产线上。控制系统是工业机器人的灵魂核心,其性能决定加工质量与运行效率。由于机器人是关节运动系统,运动惯量随运动位姿变化而改变,其关节力矩耦合度高,当高速、重载和臂展变化大时,其惯量变化大,非线性效应显著。使用常规的PID控制方法时,为保证稳定性只能使用保守的控制参数,由此导致动态特性差,轨迹误差大和定位效率低,系统性能不能发挥。为此,本文进行基于逆动力学前馈的工业机器人控制技术研究,提高机器人控制性能与运行效率。主要内容如下:对六自由度工业机器人进行了动力学建模与分析,并对关节摩擦力矩进行线性化处理;研究了基于逆动力学的前馈控制策略,并在Simulink环境下进行了控制性能仿真。结果表明,逆动力学前馈控制可以有效提高机器人动态特性与控制性能。逆动力学控制的关键在于模型参数的精确获得,对此,采用整体辨识法辨识机器人动力学参数:以最小惯性参数简化动力学模型;利用有限傅立叶级数+五次多项式方法设计的激励轨迹,以最小化观测矩阵条件数为目标优化轨迹参数,提高激励轨迹对噪声的鲁棒性;利用加权最小二乘法估计参数;并用扩展状态观测器处理关节运动状态采样信号,仿真结果表明了该方法的优越性。在上述研究基础上,搭建了六轴工业机器人实验平台,进行了机器人的动力学参数辨识和基于逆动力学前馈的运动控制实验研究。结果表明,该参数辨识方法实现了较好的辩识效果,基于逆动力学的前馈控制效果明显,能有效提高机器人控制特性,有效降低轨迹误差。
其他文献
随着电子信息行业的高速发展,电磁辐射严重影响了设备的运行质量和信息传输安全等。电磁吸收材料是解决目前全球性电磁辐射问题的有效手段之一。电磁吸收材料是指能够吸收电子元器件本身产生的源辐射和外部器件/设备产生的电磁辐射的材料。其基本损耗机制可以分为介电损耗和磁损耗。电磁吸收材料的性能与其成分以及吸收体的微结构是息息相关的,微波吸收性能主要取决于材料和电磁波之间的阻抗匹配,以及材料本身的复介电常数和复磁
GCr15轴承钢是高碳铬轴承钢中的典型代表,自问世以来其化学元素的含量几乎没有变化,但是其疲劳寿命与早年相比有了几十倍的提高,其主要原因是其纯净度的显著提高。氧化物夹杂是影响轴承钢疲劳寿命的关键,因此,钢中氧质量分数是衡量轴承钢质量的重要指标,如何降低钢中氧质量分数,并对钢中夹杂物进行控制是生产高质量轴承钢的关键因素之一。为了获得更好的脱氧效果提高轴承钢质量,本论文尝试开展新型脱氧剂的研究。Mg是
基于我国硼镁矿资源现状,以及酸法生产过程中硼和镁难于分离的实际问题,不仅造成了资源的浪费,而且还存在环境污染问题,从而使我国硼行业生产处于全面亏损的不利局面。因此,实现溶液体系下硼和镁元素的有效分离及资源化利用是解决我国硼行业生产问题的关键,而相关基础研究尤为重要。分子动力学模拟方法作为研究溶液体系中粒子赋存行为与缔合特性的一种重要可视化方法,对深入理解高温高压体系下溶液中粒子的赋存状态具有重要意
随着机器人技术的发展,机器人与人在服务业和工业等动态场景中的合作越来越紧密。在这种以人为中心的场景中,保证机器人产生反应性运动以及避免与人或其他环境发生碰撞至关重要。传统机器人控制方法能够实现机器人在结构化环境中高速、高精度运动,然而这些方法严重依赖于对机器人运动的离线规划,故难以在非结构化环境中灵活地、安全地应对环境的动态变化。因此,为了提高机器人在动态环境中适应性和安全性,本文从环境感知、避障
随着工业机器人应用领域越来越广泛,精准评估整机性能以实现机器人在各种场合下高效高精高可靠性的应用并充分发挥性能优势越来越重要。然而工业机器人整机性能评估指标及其影响因子多、影响关系耦合性强、运行环境及工况条件多变,极大地限制了实验研究法的执行性及准确性。针对上述问题,本文结合国家重点研发计划项目,提出了一种基于机器学习算法的工业机器人整机性能评估模型。本文分析了减速器、伺服电机、控制器等工业机器人
1970年,美国康宁玻璃公司成功研制了第一根衰减为20d B/km的石英玻璃光纤,从此拉开了光纤应用高速发展的序幕。光纤切割是光纤通信与光纤激光器制造过程中的光纤处理工艺,是得到光纤端面的常见方法。特别在大功率光纤激光器的生产制造中,光纤端面的质量对光纤熔接效果以及激光器的传输效率有着重要的影响。因此探究掌握光纤切割机理、摸索切割工艺并构建高精度的光纤切割平台对高功率光纤激光器的发展有着重要的意义
柔性器件具有体积小、质量轻、载体自适应能力强等特点,在国防、医疗、信息、能源等领域应用前景广阔。然而,柔性器件在性能测试和设计制造过程中仍面临诸多问题:(1)在性能测试方面,缺乏专门针对柔性器件拉伸性能测试的设备,如实现柔性器件单轴拉伸、周向拉伸的测试设备;(2)在设计制造方面,确保柔性器件在大形变下导电性能稳定的基底结构有待进一步研究。基于柔性器件对拉伸性能测试设备、合理基底结构的需求,本文设计
定向凝固技术可以实现单向传热使晶体定向生长,具有温度梯度、热流方向以及凝固速率可控的优势而应用广泛,而强磁场的多种作用效果可以在凝固过程中诱发晶体取向、控制熔体流动影响溶质分布以及微观组织形貌,对强磁场下金属定向凝固过程的研究有助于凝固科学的发展、新材料的开发和工业生产工艺的优化。目前关于强磁场对合金定向凝固过程作用机理的研究还有待进一步完善。本文以亚共晶Mn-89.7 wt.%Sb合金和过共晶M
在工业检测领域,基于深度学习的算法已经广泛应用于表面缺陷检测。然而在工业领域难以获得足够数量的缺陷样本,导致数据驱动的深度学习方法难以解决所有表面缺陷检测任务。本文详细分析当前缺陷检测算法在实际应用中所面临的问题,提出小样本条件下的表面缺陷检测算法和无缺陷样本条件下的表面缺陷检测算法。针对表面缺陷样本获取困难,样本数量难以满足深度学习模型训练要求的问题。本文提出一种基于YOLO网络的小样本缺陷检测
双目视觉作为计算机视觉领域研究的热点内容之一,其可以实现对目标物体环境信息的获取与重构,故其在目标定位方面应用广泛。为了使机器人能够代替工人完成复杂、危险作业环境中的工作以及减轻工人的劳动量,本文研究了在双目视觉的引导下,使机器人自动进行目标定位与抓取。本文主要研究了以下几个方面的内容:(1)研究了常用图像预处理算法,抑制了目标图像的噪声和增强了目标图像的细节特征。通过对特征提取、边缘提取建模和模