论文部分内容阅读
日面上的爆发活动经常与磁绳有关,而电流环不稳定性可以解释磁绳的初始抬升和爆发过程,伴随着磁绳的抬升,磁绳下方电流片的磁场重联释放出磁场中存储的能量,太阳耀斑由此发生。本文讨论了不同参数下电流环不稳定性的爆发条件,以及太阳耀斑极紫外后相的物理特征和成因,并分析了它们的磁场拓扑结构所起作用。
以三维磁流体动力学数值模拟为手段,使用Titov-Démoulin无力场模型设定磁绳初始状态,磁绳足点固结,通过改变磁绳的粗细,足点距离,背景磁场与磁绳的夹角,研究磁绳在一系列不同参数下其电流环不稳定性的爆发阈值。过去的理论模型给出背景磁场的极向分量衰减因子为3/2时磁绳处于临界爆发状态,但在日面观测和实验中发现了不同情形下临界衰减因子散落在[1,2]之间。通过分析不同参数下得到的临界衰减因子,得到了如下结果:1.在磁绳比较粗的情况下,在磁轴位置测量的临界衰减因子数值偏高,而此时的电流经过演化聚积在磁轴下方,应考虑用经电流加权后的临界衰减因子表征背景磁场的衰减特征。在无环向分量的情况下,电流加权的临界衰减因子仍在区间[1,3/2]。2.在计算衰减因子的公式中,若高度的测量基于的零点不同,则衰减因子的数值也会不同。理论上零点应取于电流环中心,但观测上一般取为光球面。在大大偏离理论上细绳假设的情况下,越粗的磁绳对应的基于光球面测量的临界衰减因子越大,与理论预言的趋势相反。但如果考虑磁绳抬升后电流环圆心的变化,并基于圆心位置测量的临界衰减因子,则仍可以解释临界衰减因子随磁绳粗细反转的原因。3.背景磁场的环向分量对磁绳有强烈的致稳作用,一些参数下临界衰减因子甚至达到2以上。4.临界不稳定的爆发初期基本符合自相似膨胀假设,平衡态下为半环形的磁绳尤其符合。
太阳耀斑的衰减相中在极紫外波段有时会有二次辐射通量增强,称为极紫外后相。过去的工作认为极紫外后相与主相发生在大小不同的两组环系,而极紫外后相的成因是二次加热还是长的环系的冷却过程存在争议。分析了2010年至2014年间伴随着极紫外后相的55个M级以上耀斑,基于耀斑带的形态,这些耀斑被分类为环形耀斑(19个)、双带耀斑(23个)和复杂耀斑(13个)。其中有22个耀斑事件(40%)观测到了相关的日冕物质抛射。双带耀斑中的48%,环形耀斑中的37%,复杂耀斑中的31%观测到了后相峰值辐射通量超过主相峰值的超强极紫外后相,显示双带耀斑比环形耀斑更容易发生二次加热。因为后相辐射区域面积基本都大于主相区域,且空间上相互分离,环系的冷却可能是后相峰值晚于主相峰值出现的主要原因,尤其是对于环形耀斑。磁零点的“扇-脊”拓扑结构是内嵌在“穹-片”准分界层的子结构,示例的一个环形耀斑的后相成因可以很好地被“穹-片”准分界层解释。有一半的环形耀斑发现了磁零点的“扇-脊”拓扑结构。“穹-片”准分界层的存在是发生环形耀斑的主要原因。
以三维磁流体动力学数值模拟为手段,使用Titov-Démoulin无力场模型设定磁绳初始状态,磁绳足点固结,通过改变磁绳的粗细,足点距离,背景磁场与磁绳的夹角,研究磁绳在一系列不同参数下其电流环不稳定性的爆发阈值。过去的理论模型给出背景磁场的极向分量衰减因子为3/2时磁绳处于临界爆发状态,但在日面观测和实验中发现了不同情形下临界衰减因子散落在[1,2]之间。通过分析不同参数下得到的临界衰减因子,得到了如下结果:1.在磁绳比较粗的情况下,在磁轴位置测量的临界衰减因子数值偏高,而此时的电流经过演化聚积在磁轴下方,应考虑用经电流加权后的临界衰减因子表征背景磁场的衰减特征。在无环向分量的情况下,电流加权的临界衰减因子仍在区间[1,3/2]。2.在计算衰减因子的公式中,若高度的测量基于的零点不同,则衰减因子的数值也会不同。理论上零点应取于电流环中心,但观测上一般取为光球面。在大大偏离理论上细绳假设的情况下,越粗的磁绳对应的基于光球面测量的临界衰减因子越大,与理论预言的趋势相反。但如果考虑磁绳抬升后电流环圆心的变化,并基于圆心位置测量的临界衰减因子,则仍可以解释临界衰减因子随磁绳粗细反转的原因。3.背景磁场的环向分量对磁绳有强烈的致稳作用,一些参数下临界衰减因子甚至达到2以上。4.临界不稳定的爆发初期基本符合自相似膨胀假设,平衡态下为半环形的磁绳尤其符合。
太阳耀斑的衰减相中在极紫外波段有时会有二次辐射通量增强,称为极紫外后相。过去的工作认为极紫外后相与主相发生在大小不同的两组环系,而极紫外后相的成因是二次加热还是长的环系的冷却过程存在争议。分析了2010年至2014年间伴随着极紫外后相的55个M级以上耀斑,基于耀斑带的形态,这些耀斑被分类为环形耀斑(19个)、双带耀斑(23个)和复杂耀斑(13个)。其中有22个耀斑事件(40%)观测到了相关的日冕物质抛射。双带耀斑中的48%,环形耀斑中的37%,复杂耀斑中的31%观测到了后相峰值辐射通量超过主相峰值的超强极紫外后相,显示双带耀斑比环形耀斑更容易发生二次加热。因为后相辐射区域面积基本都大于主相区域,且空间上相互分离,环系的冷却可能是后相峰值晚于主相峰值出现的主要原因,尤其是对于环形耀斑。磁零点的“扇-脊”拓扑结构是内嵌在“穹-片”准分界层的子结构,示例的一个环形耀斑的后相成因可以很好地被“穹-片”准分界层解释。有一半的环形耀斑发现了磁零点的“扇-脊”拓扑结构。“穹-片”准分界层的存在是发生环形耀斑的主要原因。