热轧带钢氧化铁皮厚度与结构演变模型的开发及应用

来源 :东北大学 | 被引量 : 0次 | 上传用户:jaczolo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着我国制造行业的快速发展,钢铁企业对钢材表面状态的要求迅速提高,用户对产品表面质量问题“零容忍”的态度,正倒逼钢铁企业把产品表面质量作为衡量产品品质的一项至关重要指标。高表面质量带钢产品的生产是以氧化铁皮厚度与结构精准控制技术为基础的,其目标是基于氧化铁皮厚度与结构预测模型实现氧化铁皮厚度与结构演变过程的动态跟踪,最终实现氧化铁皮厚度与结构的精准控制。基于此,本文对带钢热轧过程中氧化铁皮厚度演变模型、带钢卷取后冷却过程中温度场和氧化铁皮结构转变模型进行了研究,并开发了氧化铁皮厚度与结构预测软件,在高表面质量热轧低碳钢生产中进行了应用。本文的研究内容如下:(1)为了实现热轧带钢氧化铁皮厚度预测,建立了复杂变温条件下氧化动力学模型,结合轧制过程中实际工况特点,在变温氧化动力学模型中引入除鳞效率、氧化铁皮致密度变化系数等参数,建立了适用于轧制过程的氧化铁皮厚度预测模型。模型预测结果表明,在加热和冷却阶段,氧化铁皮厚度不断增加,而在除鳞与轧制过程中氧化铁皮厚度会降低。氧化铁皮厚度预测结果与实测结果之间吻合度较高。(2)为了实现热轧带钢氧化铁皮结构预测,首先采用有限差分法建立了带钢卷取后冷却过程中的温度场模型。模型预测结果表明,冷却过程中钢卷各表面不同位置温度实测值与预测值较为接近。在宽度方向上温度最高点在钢卷中部,最低点在钢卷边部。半径方向上温度最高点向钢卷内径壁表面方向移动,最低点在外径壁表面。钢卷横截面的温度梯度先增加后减小,且同一时刻钢卷横截面边角处温度最低。(3)针对氧化铁皮结构预测无数值模型的问题,基于等温转变实验结果与JMAK方程建立了 FeO等温条件下共析转变动力学模型,并结合Scheil可加性法则建立了 FeO连续冷却以及卷取后冷却条件下共析转变动力学模型。模型预测结果表明,在连续冷却条件下,随着冷却速率的增加,FeO层内共析组织的体积分数不断减少,共析相变孕育期逐渐变短。在卷取后冷却过程中,氧化铁皮中共析组织体积分数随卷取温度的升高而不断增加,且钢卷冷却至室温后边部共析组织体积分数少于心部。(4)开发了轧制热轧全流程氧化铁皮厚度与结构预测软件,工业生产氧化铁皮实测数据表明软件具有很高的预测精度。针对热轧低碳钢氧化铁皮控制不合理的问题,结合软件预测结果,提出了“高温快轧”的工艺优化策略。工业试制结果表明,工艺优化后氧化铁皮厚度降低,氧化铁皮中共析组织体积分数增加。
其他文献
机械活化因可以通过提供一种灵活的机械力来改变矿物的物化性质,而备受矿冶工作者的关注。相关学者在黄铁矿、黄铜矿、方铅矿、闪锌矿和辉钼矿等硫化矿机械活化方面进行了大量研究工作,但对于黄铁矿机械化学活化和毒砂机械活化的研究却鲜有报道。本文以黄铁矿和毒砂纯矿物为实验原料,行星式球磨机作为活化设备,分别进行机械活化,对活化后矿物的物化性质及溶解性分别进行研究,得到以下结论:(1)黄铁矿机械活化实验结果表明,
生活垃圾成分复杂,经气化催化改质制得的合成气中往往会含有一定量的硫化氢等污染物,严重制约了合成气的进一步应用。高效脱除合成气中H2S,对于促进生活垃圾气化催化改质技术的工业化应用,拓展垃圾气化应用途径,具有重要的辅助作用。基于此,本论文制备了不同类型的脱硫剂,并将其用于催化脱除H2S的基础研究,明确了合理脱硫剂有效组元及合理配比,获得如下结论:(1)以A型分子筛作为载体,ZnO为活性组分,CuO为
研究表明,交流磁场处理熔体影响其形核过程,从而调控凝固行为,改善合金的综合力学性能。有关熔体研究的结果也表明,熔体的形核过程受熔体内部的短程有序结构影响,由于合金熔体大多处于高温状态,对其微观结构进行直接地观察与检测十分困难,然而很好地检测合金熔体内部的短程有序结构变化,才能够从本质和机理上理解熔体的形核过程。与熔体结构密切相关的热电势能够表征熔体内部的结构变化,揭示形核过程。解析交流磁场影响铅锡
近年来,人们对美好环境的要求日益迫切,国家也因此出台了更为严格的环境标准,这一切所形成的压力很大一部分都落在生产型企业身上。诸如炭黑、水泥、垃圾焚烧等行业需要为高温烟气的处理承担高额成本。由于现有的过滤材料最高工作温度只有200℃左右,因此企业在高温烟尘过滤先必须先进行降温处理,这就提升了生产的成本。尤其以烟尘处理常用的SCR脱硝工艺为例,由于过滤材料耐温性的不足,导致企业必须以牺牲脱硝催化剂使用
热轧无缝钢管广泛应用于电力、石油、化工、船舶等多个领域,是一种不可替代的钢铁材料。在热轧无缝钢管传统的生产过程中,管坯成形需要经历加热、高温穿孔、高温轧制、定径等工序。受几何形状制约,热轧无缝钢管并不能像其他类型钢材一样通过控制轧制来细化奥氏体晶粒,导致冷却后的相变组织过于粗大,严重恶化钢管的力学性能。目前细化室温组织的手段只有快速冷却技术及在线常化,但靠这两种方法钢管组织细化的能力有限。因此本课
无磁不锈钢因其具备良好的耐蚀性、无磁性、力学性能和加工性能,在工业上已经广泛的应用在多个领域。随着现代制造业的技术升级,对钢铁材料的要求也越来越高,传统的无磁不锈钢已经不能满足现今使用需求,研发性能更加优异的无磁不锈钢变得尤为重要。本文以自主研制的2115-3无磁不锈钢(简称15-3实验钢)为研究对象,进行了热变形行为、板材热轧实验、热轧板固溶和时效处理等实验研究,探索出了经过热加工和热处理工艺后
作为使用最广泛的聚烯烃之一,聚丙烯(PP)材料已被广泛的应用于医药、家电、食品包装、汽车和建筑材料等诸多领域。然而,PP的极限氧指数(LOI)仅有17-18%,属于易燃材料且在燃烧过程中大量释放有毒烟气,给人们的生命财产带来了巨大的安全隐患,限制了该类材料的进一步应用。因此,对PP进行阻燃改性具有重要的意义。本论文设计合成了一种可聚合的固体笼状双环磷酸酯阻燃剂,具有热稳定好、热释放速率低、使用加工
低合金耐磨钢板因其合金含量低、韧塑性良好、可折弯和焊接成型及具有优异的耐磨性等优点,广泛应用于工程机械、矿山机械、水泥机械和冶金机械等装备制造。通常情况下,低合金耐磨钢的耐磨性与硬度密切相关,即硬度越高耐磨性越好,但硬度的增加,会恶化材料的机加工性能、成型性和焊接性能。本文在低合金耐磨钢合金成分的基础上加入一定量的Ti、Mn元素,通过在马氏体基体上引入超硬TiC粒子和亚稳奥氏体,实现了在硬度不增加
酞菁的分子结构高度对称,具有物理化学稳定性,以及独特的光电性能。其薄膜容易吸附氧,在外加电场作用下,电离氧空位堆积逐渐形成导电通路,表现出独特的电滞特性,有望用作忆阻器。本文测试了铁酞菁(FePc)薄膜电子器件的电滞行为,探索铁酞菁用作忆阻器的可能性。通俗来说,晶体的晶体学质量对器件的性能好坏起着至关重要的作用。为了保证薄膜电子器件的最优化,本论文从原料合成、薄膜生长条件、器件结构三个方面进行实验
Al-Mg系合金因其较高的抗拉强度,较低的密度以及优良的耐腐蚀性等特性而广泛应用于空天、海洋、汽车等领域。然而,高镁含量Al-Mg合金塑性较差,变形性能较低一直是该系列合金研究领域中亟待解决的关键问题。合金化是改善Al-Mg系合金组织和力学性能的有效途径,其中Sn元素是研发高性能铝合金极具潜力的合金化元素之一,可改善合金的微观组织、提高合金的力学性能,并可提高合金成形性能,有望解决高Mg含量Al-