恒压条件下冻融循环对粉砂力学特性的影响

来源 :东北电力大学 | 被引量 : 0次 | 上传用户:jemi0926
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
季节性冻土在我国的分布面积较广,其面积占了约有全国总的国土面积的53.5%,随着一年中温度的周期性变化,冻土会随之不断地经历着冻结与融化的循环过程。所以在季节性冻土区施工时,需要考虑到冻融循环后土体力学特性的变化。在实际中,土体在有外部荷载的情况下发生冻融循环,所以在研究季节性冻土力学特性变化的时候,还原土体在冻融循环时实际的受力状态就尤为重要。本论文的试验材料选用粉砂,进行分组对照试验。将相对密实度Dr分别为0.35、0.6、0.9的粉砂试样进行冻融循环,根据实际环境,冻结温度选取-5℃、-10℃及-15℃,冻结时过程持续12h,融化温度为20℃,融化过程持续12h。在冻融循环的过程中,为了模拟粉砂土基础在自然界中的实际受力情况,保持粉砂试样在此循环持续的过程中始终处于有效围压(100k Pa、200k Pa、300k Pa)的作用下。冻融循环结束后,在相对应的围压下进行不固结不排水三轴剪切试验,最后分析分析试验数据获得不同状态的粉砂试样在经历不同条件下经历冻融循环后的力学特性变化规律,主要的研究成果如下:(1)冻融循环次数的增加改变了粉砂的偏应力-应变关系曲线,在第7次冻融循环后变为应变硬化型;冻融循环次数的增加破坏了粉砂的结构,导致粉砂的破坏强度降低,但却随围压的增加而增大;在围压为100k Pa和200k Pa时,随着冻融循环次数的增加,粉砂的弹性模量降低。在300k Pa情况下,弹性模量先是随着冻融循环次数增加而降低,在第7次冻融循环时增大。在经历冻融循环次数相同时,随着围压的增加,粉砂的弹性模量增大;粉砂试样的内摩擦角随着冻融循环次数的增加而增大,而黏聚力却是减小的。(2)在冻融循环7次的情况下,冻结温度的变化不能改变粉砂的偏应力-应变关系曲线的型式;粉砂的破坏强度随着冻结温度的降低及围压的增加而增大,但是冻结温度的变化对粉砂试样的破坏强度影响较小;当冻结温度降低时,粉砂的弹性模量先减小后增大。而随着围压的增大,弹性模量增大,但是其增大量逐渐降低;冻结温度降低,粉砂的内摩擦角减小,且当温度降低至一定程度后,粉砂的内摩擦角趋于稳定。而黏聚力的变化规律与之相反。(3)相对密实度小的粉砂,其偏应力-应变关系曲线为应变软化性,而相对密实度大的粉砂偏应力-应变关系曲线变成应力硬化型;相对密实度和围压的增加,增大了粉砂的破坏强度。粉砂的相对密实度从0.35升到0.6时,破坏强度提升幅度大;粉砂的弹性模量随着相对密实度及围压的增大而增大,且内摩擦角和黏聚力也随之提高。其中相对密实度从0.6升到0.9时,内摩擦角和黏聚力的增大幅度较小,表明当粉砂达到一定密实度后,其抗剪强度逐渐趋于稳定。
其他文献
换热器作为工业生产领域中关键的节能设备之一,在热量的回收及综合利用等方面发挥着重要作用。天然水是热力工程中最易获得且成本最低的传热工质,但其中普遍含有多种溶解无机盐及其他杂质。工质与换热表面发生热量交换时,具有反常溶解性的无机盐易在换热表面上沉积导致换热表面结垢。结垢表面具有更高的传热过程热阻,工质流动阻力也因此增加,其在恶化换热设备传热性能的同时亦加剧了工质输运设备的能耗。因此,针对换热设备结垢
微通道换热器因其结构简单,易于封装且具有高效的换热能力等优势被广泛的应用于航空航天、生物器材和微机电子等诸多领域。但是,随着微电子器件在有限体积内的集成度越来越高,其热负荷对换热设备提出了新的考验。简单结构的微通道换热器已经难以满足其散热需求,因此,亟需设计出换热性能更优的微通道以解决当今的芯片散热问题。本文提出了一种布置有新型类卵形肋柱的微通道换热器(microchannel with oval
储热技术是未来协调能源供需平衡、解决可再生能源时空不匹配问题的有效方法之一。在众多储热技术中,填充床储热技术具有结构简单、造价低廉、换热面积大、传热性能好、设备需求低等优点。采用数值模拟的方法研究填充床储热的性能因减少了成本消耗、避免了时间浪费而成为近年来研究工作的主流和焦点。综上,本文进行了以下研究工作。构建封装球形相变胶囊的填充床储热装置的物理模型。基于Schumann模型,考虑球形相变胶囊和
换热器的颗粒污垢积聚会引发燃料消耗,导致流动阻力和维护成本支出增加等一系列问题。目前应对换热设备颗粒污垢的方法仍然十分有限。改性表面技术的发展为抑制换热设备颗粒污垢的积聚提供了新的思路。本文采用化学复合镀的方法在尺寸为(30×30×0.2)mm3的316不锈钢试样上制备Ni-P-TiO_2复合纳米改性表面,并对该表面的表面性能进行分析。在室温下,通过在冷却水中加入粒径为50nm、浓度为1g/L的M
煤炭作为我国储藏丰富的常规化石燃料,其消费总量的50%以上被用来燃烧发电。碳烟被定义为煤、石油等碳氢燃料热解或不完全燃烧所产生的碳质颗粒,对人体健康、生态环境和工业生产具有很大影响。超细碳烟颗粒可深入到肺中而引起呼吸系统疾病,另外,碳烟对全球变暖的贡献仅次于二氧化碳,燃烧设备中碳烟的存在对其热效率有重要影响。因此,对碳烟的生成过程以及影响碳烟生成的因素进行深入研究,对降低碳烟排放,提高燃烧设备燃烧
污垢的积聚严重影响着换热设备的传热效率,甚至堵塞或爆裂管道,也正由于其对工业生产的经济性和安全性的巨大影响,所以污垢积聚问题引起了国内外学者的广泛关注。准确检测污垢,是污垢抑制和清除的前提。周向导波具有对径向厚度变化敏感、应用便捷并且检测高效的优点,利用周向导波对管道内污垢厚度进行检测具有较好的前景。由此,本文采用理论分析、模拟仿真、检测实验相结合的方式,利用周向导波对换热管污垢检测展开了相关研究
潜热本身的高能量密度与其较好的操控性成为了储热研究的焦点,但也由于传统相变材料(Phase Change Materials,PCM)的低导热系数,在实际应用中更是困难重重。多孔介质(Porous Media)具有特殊的网格化结构,泡沫金属(Foam Metal)作为一种骨架特殊的多孔介质,主要用途为强化传热,因此在辅助PCM提高导热率过程中起到至关重要的作用。但是泡沫金属的内部构造复杂且并不存在
随着我国城镇化进程不断推进,建筑能耗呈逐年上升趋势,而集中供热是目前建筑耗能里最具节能潜力的部分。通常在集中供热管网设计过程中,仅凭经验设计会使得管网前期投资增加,进而导致运行阶段存在水力失调的问题,难以满足管网安全性与经济性要求。另外,运行调节过程中供热量和热负荷不匹配问题,使得水泵能耗过高,能源浪费严重。对集中供热管网进行管路设计优化可以最大限度降低建设和运行成本;而管网的运行调节优化可以提高
空气源热泵作为北方清洁供暖项目“煤改电”方案中较为适宜的方式,具有高效节能、安装灵活和成本低等特点,然而在气温较低的寒冷地区仍存在压比大、结霜和排气温度过高等问题,导致制热性能衰减严重。对此,领域内众多学者提出了相关改善方案,其中双级压缩中间喷射技术是改善空气源热泵低温性能的有效解决措施。对该技术地深入研究,可进一步提高热泵装置的低温适应性能,拓展其应用范围。因此,本文基于实验测试与仿真模拟,对系
传统的干燥方式虽结构简单、造价低,但存在热效率低、热损失大、污染大气环境并且影响物料干燥品质等问题。我国东北地区主要以多段塔式燃煤干燥系统为主,在干燥过程生成的高温废气直接被排出外界环境,造成很大的能量损失。热泵因具有高效回收余热的优点,应用于干燥行业,可以有效回收干燥回风中的热量、降低干燥能耗、减小大气环境污染。目前存在的热泵干燥技术,在实际的工业生产中存在一定的问题:蒸发温度与冷凝温度差值过大