论文部分内容阅读
针对齿轮箱故障信号的非线性和非平稳性特征,提出基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、关联维数和支持向量机(Support Vector Machine,SVM)的故障诊断方法.将美国国家可再生能源实验室(National Renewable Energy Laboratory,NREL)“Gearbox Reliability Collaborative(GRC)”项目进行测试获得振动信号数据,通过EEMD进行分解得到本征模态函数(Intrinsic Mode Function,IMF)分量,采用G-P算法求取各组本征模态函数分量的关联维数,将各组关联维数输入SVM中进行故障识别及分类.结果 表明:振动信号的关联维数与嵌入维数呈正相关,且正常信号和故障信号的关联维数区分度不明显,通过SVM能对其进行精确识别和分类.该方法能有效提取系统故障非线性特征,比传统的基于统计参数的故障诊断方法具有更高的诊断精度,准确率高达100%.