一类解耦非线性双曲守恒律系统的广义黎曼问题

来源 :昆明学院学报 | 被引量 : 0次 | 上传用户:gl112238
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究一类解耦非线性双曲守恒律系统的广义黎曼问题.在适当的初值条件下,构造了该问题的狄拉克激波(δ-激波)解,并证明了包含δ-激波的整体间断解的存在唯一性.
其他文献
在分析对称双弹簧振子横向振动特点的基础上,根据极限情况下方程解的性质,提出双弹簧振子横向振动微分方程的近似解析解,并得到了横向振动周期的具体表达式;通过与数值解结果
研究了块矩阵A=(Aij)与矩阵B=(bij),bij={||Aij-1||-1,i=j,||Aij||,i≠j,的谱半径的关系,证明了ρ(A)≤ρ(B),其中ρ(A),ρ(B)分别是它们的谱半径.特别是,若A是块H-矩阵,则ρ(A)≤maxi{2||Aii-1||-1.}
应用型人才的培养,应着力提高学生解决经济社会发展中实际问题的能力。教学实践表明,政治经济学的学科定位、教学内容和实践环节等,与应用型人才培养目标不符,制约了应用型人
根据实变函数的教学实践,介绍了该课程教学改革的一些具体做法.
云服务预订协商机制中使用的折中算法直接影响协商的速度,但已有的折中算法并没有考虑历史协商结果对于当前提议的影响,限制了协商的速度。对此,提出融入权重的云服务预订协商折
我国是世界上受自然灾害威胁最严重的国家之一,减轻自然灾害的危害已成为当前及今后亟待解决的问题之一。“国际减轻自然灾害十年”认为“教育是减轻灾害计划的核心,知识的传
中医学方法论是中医基础理论研究的一个重要内容和手段。科学需要积累事实,这样才能从中总结出正确的规律和结论。最重要的是鼓励人们去发现和认识未知的现象和规律。科学理论